Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

主要的鐵同位素
同位素 衰變
丰度 半衰期 (t1/2) 方式 能量
MeV
產物
52Fe 人造 8.275 小时 β+ 1.357 52Mn
54Fe 5.845% 穩定,帶28粒中子
55Fe 人造 2.7562  ε 0.231 55Mn
56Fe 91.754% 穩定,帶30粒中子
57Fe 2.119% 穩定,帶31粒中子
58Fe 0.282% 穩定,帶32粒中子
60Fe 痕量 2.62×106  β 0.237 60Co
標準原子質量英语Standard atomic weight (Ar, 標準)
←Mn25 Co27

原子量:55.845(2))共有34個同位素,有四種天然同位素,其中有4個是穩定的,他們包括54
Fe
豐度佔5.845%、56
Fe
豐度佔91.754%、57
Fe
豐度佔2.119% 、58
Fe
豐度佔0.282%,其中54
Fe
在許多研究中表明可能具放射性,半衰期大於3.1×1022年,但目前尚未觀測到明確的衰變現象。下面列出24種鐵已知的放射性同位素半衰期等資料,也可以參考布魯克海文國家實驗室交互式核素表页面存档备份,存于互联网档案馆)以查閱更精確的數值。

早期許多測量鐵的同位素組成多半是著重在伴隨核合成過程(也就是隕石相關研究)以及成礦分析來確定60
Fe
的變化量;然而,在過去十年中,在質譜分析技術的進步已經允許在短時間內檢測和定量天然存在的鐵的穩定同位素的比率。這項技術大部分已運用在地球科學行星科學的相關研究,應用生物和工業系統也開始出現[2]

鐵-54

鐵-54理論上可以經由雙電子捕獲英语Double_electron_capture衰變成鉻-54,半衰期大於3.1x1022[3],但目前沒有觀測到鐵-54的衰變,因此鐵-54可以視為觀測上穩定的同位素。

鐵-56

鐵-56是所有核素中,平均核子質量最低的核素,平均每個核子質量為930.412 MeV/c2[4],相當於0.9988個原子質量單位,但並不是平均結合能最高的核素,平均結合能最高的核素是鎳-62[5]。然而,根據核合成的運作細節,56
Fe
通常是極大質量恆星核聚變鏈的更常見的終點,因此在宇宙中十分常見,但相對於其他金屬,包括62
Ni
58
Fe
60
Ni
都具有非常高的結合能[6]

鐵-57

由於鐵-57有低自然變化的躍遷能量14.4KeV,因此被廣泛應用於穆斯堡爾譜和相關的核共振振動光譜英语Nuclear resonance vibrational spectroscopy[7]

鐵-60

鐵-6060
Fe
)是鐵的同位素之一,其半衰期約為二百六十萬[8][9],但在2009年之前一直被認為只有150萬年的半衰期60
Fe
會經歷β衰變衰變成鈷-60

圖表

符號 Z N 同位素質量(u[10]
[n 1][n 2]
半衰期
[n 2]
衰變
方式
[3]
衰變
產物

[n 3]
原子核
自旋[n 1]
相對豐度
莫耳分率)[n 2]
相對豐度
的變化量
莫耳分率)
激發能量[n 2]
45
Fe
26 19 45.01458(24)# 1.89(49) ms β+ (30%) 45
Mn
3/2+#
2p (70%) 43
Cr
46
Fe
26 20 46.00081(38)# 9(4) ms
[12(+4-3) ms]
β+ (>99.9%) 46
Mn
0+
β+, p (<.1%) 45
Cr
47
Fe
26 21 46.99289(28)# 21.8(7) ms β+ (>99.9%) 47
Mn
7/2−#
β+, p (<.1%) 46Cr
48
Fe
26 22 47.98050(8)# 44(7) ms β+ (96.41%) 48
Mn
0+
β+, p (3.59%) 47
Cr
49
Fe
26 23 48.97361(16)# 70(3) ms β+, p (52%) 48
Cr
(7/2−)
β+ (48%) 49
Mn
50
Fe
26 24 49.96299(6) 155(11) ms β+ (>99.9%) 50
Mn
0+
β+, p (<.1%) 49Cr
51
Fe
26 25 50.956820(16) 305(5) ms β+ 51
Mn
5/2−
52
Fe
26 26 51.948114(7) 8.275(8) h β+ 52m
Mn
0+
52m
Fe
6.81(13) MeV 45.9(6) s β+ 52
Mn
(12+)#
53
Fe
26 27 52.9453079(19) 8.51(2) min β+ 53
Mn
7/2−
53m
Fe
3040.4(3) keV 2.526(24) min IT 53
Fe
19/2−
54
Fe
26 28 53.9396105(7) 觀測上穩定[n 4] 0+ 0.05845(35) 0.05837–0.05861
54m
Fe
6526.9(6) keV 364(7) ns 54
Fe
10+
55
Fe
英语Iron-55
26 29 54.9382934(7) 2.737(11) y ε 55
Mn
3/2−
56
Fe
[n 5]
26 30 55.9349375(7) 稳定 0+ 0.91754(36) 0.91742–0.91760
57
Fe
26 31 56.9353940(7) 穩定 1/2− 0.02119(10) 0.02116–0.02121
58
Fe
26 32 57.9332756(8) 穩定 0+ 0.00282(4) 0.00281–0.00282
59
Fe
26 33 58.9348755(8) 44.495(9) d β 59
Co
3/2−
60
Fe
26 34 59.934072(4) 2.6×106 a β 60
Co
0+ 痕量
61
Fe
26 35 60.936745(21) 5.98(6) min β 61
Co
3/2−,5/2−
61m
Fe
861(3) keV 250(10) ns 9/2+#
62
Fe
26 36 61.936767(16) 68(2) s β 62
Co
0+
63
Fe
26 37 62.94037(18) 6.1(6) s β 63
Co
(5/2)−
64
Fe
26 38 63.9412(3) 2.0(2) s β 64
Co
0+
65
Fe
26 39 64.94538(26) 1.3(3) s β 65
Co
1/2−#
65m
Fe
364(3) keV 430(130) ns 65
Fe
(5/2−)
66
Fe
26 40 65.94678(32) 440(40) ms β (>99.9%) 66
Co
0+
β, n (<.1%) 65Co
67
Fe
26 41 66.95095(45) 394(9) ms β (>99.9%) 67
Co
1/2−#
β, n (<.1%) 66Co
67m
Fe
367(3) keV 64(17) µs (5/2−)
68
Fe
26 42 67.95370(75) 187(6) ms β (>99.9%) 68
Co
0+
β, n 67Co
69
Fe
26 43 68.95878(54)# 109(9) ms β (>99.9%) 69
Co
1/2−#
β, n (<.1%) 68Co
70
Fe
26 44 69.96146(64)# 94(17) ms 0+
71
Fe
26 45 70.96672(86)# 30# ms
[>300 ns]
7/2+#
72
Fe
26 46 71.96962(86)# 10# ms
[>300 ns]
0+
  1. ^ 1.0 1.1 畫上#號的數據代表沒有經過實驗的証明,僅為理論推測。
  2. ^ 2.0 2.1 2.2 2.3 用括號括起來的數據代表不確定性。
  3. ^ 穩定的衰變產物以粗體表示。
  4. ^ 據信,54
    Fe
    經由β+β+衰變成54
    Cr
    半衰期超過3.1×1022a
  5. ^ 所有核素中,平均重子質量最低的核素,即核合成的終點。

参考文獻

引用

  1. ^ Meija, Juris; et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry. 2016, 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. ^ N. Dauphas; O. Rouxel. Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews. 2006, 25 (4): 515–550. PMID 16463281. doi:10.1002/mas.20078. 
  3. ^ 3.0 3.1 Universal Nuclide Chart. nucleonica. [2015-09-13]. (原始内容需要免费注册存档于2017-02-19). 
  4. ^ J. R. de Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry. 2003, 75 (6): 683–800 [2015-09-13]. doi:10.1351/pac200375060683. (原始内容存档于2018-07-01). 
  5. ^ Fewell, M. P. "The atomic nuclide with the highest mean binding energy"页面存档备份,存于互联网档案馆). American Journal of Physics 63 (7): 653-58. Accessed: 2011-03-22. (Archived by WebCite® at)
  6. ^ Bautista, Manuel A.; Pradhan, Anil K. Iron and Nickel Abundances in H~II Regions and Supernova Remnants. Bulletin of the American Astronomical Society. 1995, 27: 865. Bibcode:1995AAS...186.3707B. 
  7. ^ R. Nave. Mossbauer Effect in Iron-57. HyperPhysics. Georgia State University. [2009-10-13]. (原始内容存档于2011-08-04). 
  8. ^ Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Poutivtsev, M.; Schumann, D.; Kivel, N.; Günther-Leopold, I.; Weinreich, R.; Wohlmuther, M. New Measurement of the 60Fe Half-Life. Physical Review Letters. 2009, 103 (7): 72502. Bibcode:2009PhRvL.103g2502R. doi:10.1103/PhysRevLett.103.072502. 
  9. ^ Eisen mit langem Atem. [2015-09-13]. (原始内容存档于2018-02-03). 
  10. ^ Isotope masses from Ame2003 Atomic Mass Evaluation 互联网档案馆存檔,存档日期2008-09-23. by G. Audi, A.H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in Nuclear Physics A729 (2003).

来源

同位素列表
錳的同位素 鐵的同位素 鈷的同位素