Search for LIMS content across all our Wiki Knowledge Bases.
Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Aktivirana CDC42 kinaza 1, takođe poznata kao ACK1, je enzim koji je kod ljudi kodiran TNK2genom.[1][2][3][4][5]
TNK2 gen kodira nereceptorsku tirozinsku kinazu, ACK1, koja se vezuje za višestruke receptorske tirozinske kinaze e.g. EGFR, MERTK, AXL, HER2 i insulinski receptor (IR). ACK1 takođe interaguje sa Cdc42Hs u njegovoj GTP-vezanoj formi i inhibira intrinzičnu i GTPaznu aktivnost Cdc42H. Vezivanje je posredovano jedistvenom sekvencom od 47 aminokiselina između C-terminusa i SH3 domena. Ovaj protein učestvuje u regulatornom mehanizmu kojim se održava GTP-vezana aktivna forma Cdc42H i koji je direktno povezan sa torozinsko fosforilacionim putem prenosa signala. Poznato je nekoliko alternativno splajsovanih transkriptnih varijanti ovog gena, ali se izražavaju samo dve varijante.[5]
Interakcije
ACK1 ili TNK2 formira interakcije sa AKT,[3] Androgenskim receptorom ili AR,[6] tumornim supresorom WWOX,[7]FYN[8] i Grb2.[9][10] ACK1 interakcije sa njegovim supstratima dovode do njihove fosforilacije na specifičnim tirozinskim ostacima. ACK1 direktno fosforiliše AKT na tirozinu 176, AR na tirosizinima 267 i 363, i WWOX na torozinu 287. Ack1-AR signalizacije takođe učestvuje u regulaciji ATM nivoaa[11]
↑Manser E, Leung T, Salihuddin H, Tan L, Lim L (June 1993). „A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42”. Nature363 (6427): 364–7. DOI:10.1038/363364a0. PMID8497321.
↑Yokoyama N, Miller WT (November 2003). „Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck”. J Biol Chem278 (48): 47713–23. DOI:10.1074/jbc.M306716200. PMID14506255.
↑Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Earp HS, Whang YE. (May 2007). „Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.”. Proc Natl Acad Sci U S A.104 (20): 8438–43. DOI:10.1073/pnas.0700420104. PMID17494760.
↑Mahajan NP, Whang YE, Mohler JL, Earp HS. (November 2005). „Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox.”. Cancer Res.65 (22): 10514–23. DOI:10.1158/0008-5472.can-05-1127. PMID16288044.
↑Linseman DA, Heidenreich KA, Fisher SK (February 2001). „Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway”. J. Biol. Chem.276 (8): 5622–8. DOI:10.1074/jbc.M006812200. PMID11087735.
↑Satoh T, Kato J, Nishida K, Kaziro Y (May 1996). „Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation”. FEBS Lett.386 (2-3): 230–4. DOI:10.1016/0014-5793(96)00449-8. PMID8647288.
↑Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T (June 2001). „Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner”. Biochem. Biophys. Res. Commun.284 (2): 470–7. DOI:10.1006/bbrc.2001.5004. PMID11394904.
↑Mahajan K, Coppola D, Rawal B, Chen YA, Lawrence HR, Engelman RW, Lawrence NJ, Mahajan NP. (June 2012). „Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer.”. J Biol Chem.287 (26): 22112–22. DOI:10.1074/jbc.M112.357384. PMID22566699.
Literatura
Maruyama K, Sugano S (1994). „Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides”. Gene138 (1–2): 171–4. DOI:10.1016/0378-1119(94)90802-8. PMID8125298.
Satoh T, Kato J, Nishida K, Kaziro Y (1996). „Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation”. FEBS Lett.386 (2–3): 230–4. DOI:10.1016/0014-5793(96)00449-8. PMID8647288.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). „Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library”. Gene200 (1–2): 149–56. DOI:10.1016/S0378-1119(97)00411-3. PMID9373149.
Mott HR, Owen D, Nietlispach D, et al. (1999). „Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK”. Nature399 (6734): 384–8. DOI:10.1038/20732. PMID10360579.
Eisenmann KM, McCarthy JB, Simpson MA, et al. (2000). „Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas”. Nat. Cell Biol.1 (8): 507–13. DOI:10.1038/70302. PMID10587647.
Kato J, Kaziro Y, Satoh T (2000). „Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation”. Biochem. Biophys. Res. Commun.268 (1): 141–7. DOI:10.1006/bbrc.2000.2106. PMID10652228.
Owen D, Mott HR, Laue ED, Lowe PN (2000). „Residues in Cdc42 that specify binding to individual CRIB effector proteins”. Biochemistry39 (6): 1243–50. DOI:10.1021/bi991567z. PMID10684602.
Kiyono M, Kato J, Kataoka T, et al. (2000). „Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1”. J. Biol. Chem.275 (38): 29788–93. DOI:10.1074/jbc.M001378200. PMID10882715.
Linseman DA, Heidenreich KA, Fisher SK (2001). „Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway”. J. Biol. Chem.276 (8): 5622–8. DOI:10.1074/jbc.M006812200. PMID11087735.
Teo M, Tan L, Lim L, Manser E (2001). „The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors”. J. Biol. Chem.276 (21): 18392–8. DOI:10.1074/jbc.M008795200. PMID11278436.
Kato-Stankiewicz J, Ueda S, Kataoka T, et al. (2001). „Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner”. Biochem. Biophys. Res. Commun.284 (2): 470–7. DOI:10.1006/bbrc.2001.5004. PMID11394904.
Oda T, Muramatsu MA, Isogai T, et al. (2001). „HSH2: a novel SH2 domain-containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells”. Biochem. Biophys. Res. Commun.288 (5): 1078–86. DOI:10.1006/bbrc.2001.5890. PMID11700021.
Ahmed I, Calle Y, Sayed MA, et al. (2004). „Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK”. Biochem. Biophys. Res. Commun.314 (2): 571–9. DOI:10.1016/j.bbrc.2003.12.137. PMID14733946.
Gu Y, Lin Q, Childress C, Yang W (2004). „Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase”. J. Biol. Chem.279 (29): 30507–13. DOI:10.1074/jbc.M313518200. PMID15123659.
Brandenberger R, Wei H, Zhang S, et al. (2005). „Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation”. Nat. Biotechnol.22 (6): 707–16. DOI:10.1038/nbt971. PMID15146197.
Lougheed JC, Chen RH, Mak P, Stout TJ (2004). „Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1”. J. Biol. Chem.279 (42): 44039–45. DOI:10.1074/jbc.M406703200. PMID15308621.
Vanjske veze
TNK2 human gene location in the UCSC Genome Browser.
TNK2 human gene details in the UCSC Genome Browser.