Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

Exemplo da refracção da imagem de um lápis ao ser submerso num copo cheio de água.
Note que a piscina aparenta estar ficando rasa, mas na realidade não está. Esse efeito é provocado pela refração da luz na água.

Refração (AO 1945: refracção) é a mudança na velocidade de uma onda ao atravessar a fronteira entre dois meios com diferentes índices de refração. A refração modifica a velocidade de propagação e o comprimento de onda, mantendo uma proporção direta. A constante de proporcionalidade é a frequência, que não se altera.[1]

Índice de refração

O índice de refração é a razão entre a velocidade da luz no vácuo (c) e a velocidade da luz em um determinado meio. Em meios com índices de refração mais baixos (próximos a 1) a luz tem velocidade maior (ou seja, próximo a velocidade da luz no vácuo). A relação pode ser descrita pela fórmula:

Em que: c é a velocidade da luz no vácuo (c = 3 x m/s); v é a velocidade da luz no meio;[2]

A velocidade da luz nos meios materiais é menor que c; e assim n > 1. Por extensão, definimos o índice de refracção do vácuo, que por consequência da definição do modelo é igual a 1. Portanto, sendo n o índice de refracção de um meio qualquer, temos:

A velocidade de propagação da luz no ar depende da frequência da luz, já que o ar é um meio material. Porém, essa velocidade é quase igual a c = 3 x m/s para todas as cores. Ex.: índice de refracção da luz violeta no ar = 1,0002957 e índice de refracção da luz vermelha no ar = 1,0002914. Portanto, nas aplicações, desde que não queiramos uma precisão muito grande, adotaremos o índice de refracção do ar como aproximadamente igual a 1:

[3]

Como vimos, as cores, por ordem crescente de frequências, são: vermelho, laranja, amarelo, verde, azul, anil e violeta.

A experiência mostra que, em cada meio material, a velocidade diminui com a frequência, isto é, quanto "maior" a frequência, "menor" a velocidade.

Portanto como , concluímos que o índice de refracção aumenta com a frequência. Quanto "maior" a frequência, "maior" o índice de refracção.

O cano verde parece partir-se dentro dos copos por causa da refração da luz.

Em geral, quando a densidade de um meio aumenta, o seu índice de refração também aumenta. Como variações de temperatura e pressão alteram a densidade, concluímos que essas alterações também alteram o índice de refracção. No caso dos sólidos, essa alteração é pequena, mas para os líquidos, as variações de temperatura são importantes e, no caso dos gases, tanto as variações de temperatura como as de pressão devem ser consideradas.

A maioria dos índices de refracção é menor que 2; uma exceção é o diamante, cujo índice é aproximadamente 2,4. Para a luz amarela emitida pelo sódio, sua frequência é e cujo comprimento de onda no vácuo é . Essa é a luz padrão para apresentar os índices de refracção.

Consideremos dois meios "A" e "B", de índices de refracção e ; se , dizemos que "A" é mais refringente que "B".

Continuidade óptica

Consideremos dois meios transparentes A e B e um feixe de luz dirigindo-se de A para B. Para que haja feixe refratado é necessário que .

Quando , não há luz reflectida e também não há mudança na direção da luz ao mudar de meio; dizemos que há continuidade óptica.

Quando temos um bastão de vidro dentro de um recipiente contendo um líquido com o mesmo índice de refração do vidro, a parte do bastão que está submersa, não refletindo a luz, fica "invisível".

Índice de refracção relativo

Se o índice de refracção de um meio A é e o índice de um meio B é , definimos:

= índice de refração do meio A em relação ao meio B =
= índice de refração do meio B em relação ao meio A =

Sendo vA e vB as velocidades da luz nos meios A e B, temos:

Leis da refração

Consideremos dois meios transparentes A e B e um feixe estreito de luz monocromática, que se propaga inicialmente no meio A, dirigindo-se para o meio B. Suponhamos, ainda, que uma parte da luz consiga penetrar no meio B e que a luz tenha velocidades diferentes nos dois meios. Nesse caso, diremos que houve Refração. O raio que apresenta o feixe incidente é o raio incidente (), e o raio que apresenta o feixe refratado é o raio refratado ().

A primeira lei da Refração

O raio incidente, o raio refratado e a normal, no ponto de incidência, estão contidos num mesmo plano.

A normal é uma reta perpendicular à superfície no ponto de incidência, θA é denominado ângulo de incidência entre o raio e a normal e θB, ângulo de refração entre o raio e a normal.

A segunda lei da Refração

Os senos dos ângulos de incidência e refracção são diretamente proporcionais às velocidades da onda nos respectivos meios.

Ou seja:

I

Dessa igualdade tiramos:

II

A Segunda Lei da Refração foi descoberta experimentalmente pelo holandês Willebrord van Royen Snell (1591-1626) e mais tarde deduzida por René Descartes, a partir de sua teoria corpuscular da luz. Nos Estados Unidos, ela é chamada de Lei de Snell e na França, de Lei de Descartes; em Portugal e no Brasil é costume chamá-la de Lei de Snell-Descartes.

Inicialmente a Segunda Lei foi apresentada na forma da equação II; no entanto, ela e mais fácil de ser aplicada na forma da equação I.

Observando a equação I, concluímos que, onde o ângulo for menor, o índice de refração será maior. Explicando melhor: se , o mesmo ocorre com seus senos, ; logo, para manter a igualdade da equação I, . Ou seja, o menor ângulo θB ocorre no meio mais refringente, .

Pelo princípio da reversibilidade, se a luz faz determinado percurso, ela pode fazer o percurso inverso. Assim, se ela faz o percurso XPY, ela pode fazer o percurso YPX. Mas, tanto num caso como no outro, teremos:

Quando a incidência for normal, não haverá desvio e teremos , e, portanto, , de modo que a Segunda Lei também é válida nesse caso, na forma da equação I:

Caso de ângulos pequenos

Na tabela seguinte, apresentamos alguns ângulos "pequenos" expressos em graus e radianos, com o respectivo valor do seno e da tangente:

Ângulo em graus Ângulo em radianos Seno Tangente
0 0 0 0
2 0,035 0,035 0,035
4 0,070 0,070 0,070
6 0,105 0,104 0,105
8 0,140 0,139 0,140
10 0,174 0,174 0,176

Observando esta tabela, percebemos que, para um ângulo θ, até aproximadamente 10° temos:

quando θ está expresso em radianos. Assim, para ângulos pequenos, a Segunda Lei da Refração pode ser escrita:

para ângulos em radianos e em graus (devido ao fator de conversão entre radianos e graus ser o mesmo para todos os ângulos - 180/pi).

Índices de refração de alguns meios, em relação ao vácuo

  • Vácuo: 1,0000
  • Ar: 1,0003 (aprox. 20 °C)
  • Água: 1,3321 (pura, aprox. 20 °C)
  • Gelo: 1,3100
  • Álcool: 1,3600
  • Glicerina: 1,47
  • Vidro: 1,4000 a 1,9000
  • Sal de cozinha: 1,54
  • Quartzo: 1,54
  • Bissulfeto de carbono: 1,63
  • Zircônio: 1,92
  • Diamante: 2,4200
  • Rutilo: 2,80
  • Acrílico: 1,49

Ver também


Outros projetos Wikimedia também contêm material sobre este tema:
Wikilivros Livros e manuais no Wikilivros
Commons Imagens e media no Commons


Referências

  1. http://www.algosobre.com.br/fisica/refracao-da-luz.html
  2. Nardy, Antônio. «O índice de refração». Universidade Estadual de São Paulo. Consultado em 8 de junho de 2020 
  3. «Ótica (Básico) | Índice de refração». Universidade de São Paulo. 2007. Consultado em 8 de junho de 2020