Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Reaktor jądrowy – urządzenie, w którym przeprowadza się z kontrolowaną szybkością reakcje jądrowe; na obecnym etapie rozwoju nauki i techniki są to przede wszystkim reakcje rozszczepienia jąder atomowych. Reakcje te mają charakter łańcuchowy – produkty reakcji (w tym głównie neutrony) mogą zainicjować kilka następnych. Aby uniknąć lawinowego wzrostu szybkości reakcji, reaktor dzieli się na strefy wypełnione na przemian paliwem, chłodziwem oraz moderatorem, czyli substancją spowalniającą neutrony. Szybkość reakcji kontrolowana jest m.in. przez zmianę wzajemnego położenia lub proporcji tych składników, a także przez wprowadzanie dodatkowych substancji pochłaniających lub spowalniających neutrony, zawartych w tzw. prętach regulacyjnych (służących do normalnej regulacji parametrów reakcji) oraz prętach bezpieczeństwa (stosowanych do awaryjnego wyłączania reaktora). Substancjami używanymi do pochłaniania neutronów termicznych są m.in. bor i kadm, natomiast jako moderatorów używa się m.in. berylu, grafitu, a także wody, pełniącej równocześnie funkcję chłodziwa.
Pierwszy reaktor (uranowo-grafitowy), Chicago Pile no. 1 („Stos chicagowski nr 1”, CP-1) zbudowany został na Uniwersytecie w Chicago pod kierunkiem włoskiego uczonego Enrica Fermiego. Pierwsza kontrolowana reakcja łańcuchowa została w nim zapoczątkowana 2 grudnia 1942.
Ze względu na przeprowadzaną reakcję przemiany jądrowej urządzenia do wytwarzania energii w kontrolowanej ilości dzieli się na:
Ze względu na energię neutronów wywołujących reakcję jądrową reaktory rozszczepiające wyróżnia się[1]:
Według konstrukcji układu chłodzenia reaktory jądrowe dzieli się na[2]:
Podstawowe typy reaktorów energetycznych
Grupa | Typ reaktora | Chłodziwo | rodzaj | Moderator | Paliwo jądrowe |
---|---|---|---|---|---|
Grafitowo-gazowe GCR | AGR | CO2, gaz | – | grafit | UO2 wzbogacony |
Magnox | gaz, CO2 | – | U Naturalny | ||
HTR | Hel | – | UO2, UC2, ThO2, ... (235U, 233U, Pu) | ||
Ciężkowodne | PHWR | ciężka woda | ciśnieniowy | ciężka woda | UO2 naturalny lub wzbogacony |
BHWR | wrzący | ||||
Lekkowodne LWR | BWR | lekka woda | wrzący | lekka woda | UO2 wzbogacony lub UO2 wzbogacony i MOX |
PWR | ciśnieniowy | ||||
WWER | ciśnieniowy | ||||
Wodno-grafitowe | RBMK | lekka woda | wrzący | grafit | UO2 wzbogacony |
GLWR | ciśnieniowy | U naturalny lub wzbogacony | |||
Lekko-ciężkowodne | HWLWR | lekka woda | wrzący | ciężka woda | UO2 wzbogacony – PuO2 |
Prędkie | FBR | sód | – | – | UO2 wzbogacony – PuO2 |
|
Ze względu na rozwój techniczny reaktorów wyróżnia się generacje reaktorów[3]:
Podział ten nie jest ostry, gdyż np. ten sam reaktor może służyć zarówno celom militarnym, jak i energetycznym. Z kolei reaktory badawcze często wykorzystywane są do wytwarzania radioizotopów o zastosowaniach komercyjnych.
Typowy reaktor jądrowy zbudowany jest z rdzenia, reflektora neutronów oraz osłon biologicznych. Sam rdzeń zawiera pręty paliwowe, pręty regulacyjne (pochłaniają nadmiar neutronów), pręty bezpieczeństwa, moderator (zmniejsza energię neutronów), kanały chłodzenia i kanały badawcze.
Moc reaktora jest regulowana poprzez kontrolowanie liczby neutronów, które są w stanie wywołać kolejne rozszczepienia. Zmiany mocy reaktora określa parametr pracy reaktora zwany reaktywnością reaktora.
Kontrola mocy reaktora jest realizowana poprzez pręty kontrolne, które są wykonane z substancji pochłaniających neutrony. Absorpcja większej ilości neutronów w prętach kontrolnych oznacza, że w reaktorze jest mniej neutronów, które mogą wywołać następne rozszczepienia. Opuszczając pręty – zmniejsza się moc reaktora, a podnosząc – zwiększa.
W wyniku reakcji rozszczepienia wydzielane są neutrony, które są podstawą reakcji łańcuchowej. Większość neutronów emitowana jest natychmiast (neutrony natychmiastowe) po rozszczepieniu, ale około 0,65% neutronów emitowana jest z opóźnieniem. Neutrony wyemitowane z opóźnieniem są nazywane opóźnionymi. Ich emisja ma charakter sumy zaników naturalnych z czasem połowicznego zaniku od milisekund aż do kilku minut. Istnienie neutronów opóźnionych daje czas urządzeniu mechanicznemu i operatorowi na reagowanie na zmiany liczby neutronów w reaktorze. Gdyby nie to zjawisko, czas między osiągnięciem stanu krytycznego a katastrofą nuklearną byłby zbyt krótki, aby umożliwić interwencję.
Na reaktywność reaktora wpływają także zjawiska związane ze spowalnianiem neutronów, pochłanianiem neutronów przez chłodziwo.
Z uwagi na istotną rolę neutronów w pracy reaktora jądrowego, oraz wielość zjawisk związanych z powstawaniem, spowalnianiem, ucieczką z reaktora i pochłanianiem, w teorii sterowania reaktorem wyróżnia się cykl życia neutronu jako jeden z elementów opisujących działanie reaktora[5]. Cykl życia neutronu uwzględniający możliwość ucieczki neutronu z rdzenia reaktora opisywany jest wzorem sześcioczynnikowym. Ideę konstrukcji reaktora uwzględniającą jedynie procesy zachodzące dla neutronów wewnątrz rdzenia reaktora opisuje wzór czteroczynnikowy[6].
Reakcje rozszczepienia jąder atomowych w paliwie w rdzeniu reaktora jądrowego wydzielają duże ilości ciepła. Odprowadza je się za pomocą czynnika chłodzącego – chłodziwa, które ma przeważnie postać płynu (woda, gaz, ciekły metal)[7].
W reaktorach badawczych ciepło zazwyczaj odprowadzane jest bezpośrednio do chłodni wentylatorowych. Natomiast w zdecydowanej większości elektrowni jądrowych, energia cieplna pochodząca z reakcji jądrowych jest odbierana przez wodę, która w zależności od reaktora: odparowuje (reaktory wrzące BWR) lub nie (jeśli jest pod wysokim ciśnieniem – reaktory ciśnieniowe PWR i WWER). Woda w stanie nadkrytycznym lub para przekazuje ciepło bezpośrednio turbinie (w układach jednoobwodowych) albo w wymienniku ciepła, dzielącemu układ na obieg pierwotny i wtórny, wodzie w obiegu wtórnym. Wytworzona w wytwornicy pary para napędza turbinę.
W większości reaktorów (a we wszystkich lekko-wodnych) paliwo jądrowe stanowi wzbogacony uran. Wzbogacenie polega na zwiększeniu zawartości rozszczepialnego U-235 do około 3–5% (z około 0,7%), ale reaktory ciężkowodne (CANDU, PHWR) pracują przy naturalnym udziale izotopów. Reaktory prędkie wymagają jako paliwa bardziej wzbogaconego uranu (do 20%), bądź plutonu. Produkują za to, w procesie wychwytu neutronu i następujących rozpadów beta, pluton-239 z uranu U-238. Pluton może być następnie, po wydzieleniu używany jako paliwo. Przy odpowiedniej konstrukcji reaktor jest w stanie produkować w ten sposób więcej paliwa, niż go zużywa (reaktor powielający).
W przyszłości planuje się wykorzystywać jako paliwo jądrowe tor. W wyniku rozszczepienia toru powstają jądra atomowe o mniejszej masie niż przy rozszczepieniu uranu lub plutonu i jest wśród nich więcej jąder trwałych. Rozszczepienie toru wytwarza zbyt mało neutronów by uzyskać stan krytyczny, w związku z tym do reaktora takiego trzeba by wstrzeliwać neutrony pochodzące z zewnątrz. W celu uzyskania dużej ilości neutronów naukowcy pracują nad zastosowaniem zjawiska spalacji. W zjawisku tym jądra ciężkich pierwiastków np. ołowiu są bombardowane wiązką protonów o dużej energii (rzędu 1 GeV), w wyniku czego ulegają wzbudzeniu. Jądra pozbywają się energii wzbudzenia, wyrzucając z siebie nukleony, w tym i neutrony. Zjawisko spalacji może być stosowane w celu uczynienia bezpiecznymi i przedłużenia pracy paliwa obecnych reaktorów jądrowych, a także pomóc w utylizacji radioaktywnych odpadów.
Przyszłością energetyki jądrowej może być reaktor fuzyjny, w którym paliwem może być np. powszechnie występujący na Ziemi wodór[8]. Zaletami tego reaktora jest to iż nie wytwarza on gazów cieplarnianych, ani odpadów promieniotwórczych[9].
Z uwagi na zachodzące w reaktorze reakcje jądrowe, reaktor jest źródłem promieniowania jonizującego. Mimo że produkty rozpadu jąder atomowych pozostają przede wszystkim w paliwie jądrowym w rdzeniu reaktora jądrowego, wtórna aktywacja, przede wszystkim neutronami, powoduje, że radioaktywne stają się elementy konstrukcyjne reaktora i chłodziwo[7].
W wyniku długotrwałego wystawienia na promieniowanie, niektóre elementy konstrukcyjne elektrowni jądrowej ulegają aktywacji i stają się promieniotwórcze. Dotyczy to większości pierwiastków wchodzących w skład materiałów konstrukcyjnych. Aktywność elementów konstrukcyjnych, rosnąca w toku eksploatacji reaktora, stanowi czynnik utrudniający kontrolę i naprawę. Gdy takie elementy mają kontakt z chłodziwem reaktora, mogą również tworzyć wysokoaktywne produkty korozji[7].
Szczególnie dużą aktywność dają takie izotopy jak 59Cr, 58Fe, 55Mn, 59Co. Dwa ostatnie szczególnie dobrze pochłaniają neutrony termiczne a dodatkowo są jedynymi naturalnie występującymi izotopami swoich pierwiastków, przez co mają decydujący wpływ na promieniotwórczość materiału. Już 0,03% zawartości kobaltu w stali daje większą aktywność niż reszta jej składników. Kobalt występuje jako zanieczyszczenie niklu i wraz z nim trafia do stali nierdzewnej – jednego z głównych materiałów konstrukcyjnych reaktora. Z tego względu zawartość kobaltu w stalach reaktorowych ogranicza się do 0,02%[7].
Na aktywność chłodziwa składa się aktywność własna substancji chłodzącej, aktywność zanieczyszczeń (produktów korozji, rozpuszczonych soli, pozostałości zanieczyszczeń) oraz aktywność spowodowana aktywacją neutronową. Dla wody najczęściej zachodzi aktywacja atomów tlenu, z powstawaniem protonów lub fotonów gamma. W chłodziwach metalicznych (sód, potas) najczęściej dochodzi do reakcji neutron – foton gamma. W chłodziwach najczęściej aktywowany jest argon[7].
Aktywność chłodziwa w elementach obiegu pierwotnego zależy od rodzaju czynnika chłodzącego, jego zanieczyszczeń, stanu skupienia, czasu przepływu przez reaktor i jego elementy, oraz od strumienia neutronów. Aktywność chłodziwa wzrasta z każdym kolejnym przepływem jego cząstek przez reaktor. Dla krótkożyciowych izotopów szybko osiągana jest aktywność nasycenia. Aktywność obiegu, przy założeniu że aktywność reaktora jest stała a każda cząstka chłodziwa przepływa wielokrotnie przez reaktor, można przedstawić wzorem:
gdzie:
Aktywność obiegu decyduje o możliwości i warunkach dostępu do urządzeń go tworzących i obsługujących w czasie eksploatacji reaktora[7].
Świeży uran naturalny lub wzbogacony uranem-235 ma znikomą aktywność, wynikającą ze śladowych ilości uranu-234. Świeże paliwo wykorzystujące uran-233 lub pluton-239 jest za to silnym emiterem promieniowania alfa i gamma. Dodatkowymi źródłami promieniowania tamże są inne nie rozszczepialne izotopy uranu i plutonu, których nie można oddzielić od siebie w procesie produkcji paliwa[7].
Aktywność paliwa rośnie wraz z jego wypalaniem w reaktorze. Źródłem promieniowania są produkty rozszczepienia. Przybliżona aktywność paliwa w reaktorze w τ0 dni po jego wyłączeniu (a który pracował T0 dni, wytwarzając stałą moc N watów), określona jest wzorem Waya-Wignera[7]:
Powyższe wzory wyznaczające aktywność chłodziwa i paliwa nie obejmują aktywności związanej z aktywnością zanieczyszczeń – substancji, które w konkretnym przypadku są traktowane jako zanieczyszczenia materiałów konstrukcyjnych lub chłodziwa. W chłodziwach zwykle są one pochodzenia mineralnego (sole) lub korozyjnego (tlenki metali)[7].
Poważne awarie reaktorów jądrowych:
Na świecie pracują 434 reaktory jądrowe[10] generujące energię elektryczną. Znamionowa moc elektryczna bloków energetycznych, w których skład wchodziły wynosiła 373,9 GW(e). W stanie budowy znajduje się 67 reaktorów, 159 jest planowanych, a 318 kolejnych zaproponowanych.
W 2004 roku 266 reaktorów to reaktory wodne ciśnieniowe (PWR i WWER) mogące wytworzyć 239,6 GW(e). 22 reaktory jądrowe były w budowie, z czego 12 to PWR i WWER.
Polskie reaktory:
W Kartoszynie nad Jeziorem Żarnowieckim budowano Elektrownię Jądrową Żarnowiec, lecz w 1989 budowa została przerwana.