Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
| |||||||||||||||||||||||||||
Próbka 30% perhydrolu | |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
Ogólne informacje | |||||||||||||||||||||||||||
Wzór sumaryczny |
H2O2 | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inne wzory |
HO−OH, H−O−O−H | ||||||||||||||||||||||||||
Masa molowa |
34,01 g/mol | ||||||||||||||||||||||||||
Wygląd |
bezbarwna, syropowata ciecz[1] | ||||||||||||||||||||||||||
Identyfikacja | |||||||||||||||||||||||||||
Numer CAS | |||||||||||||||||||||||||||
PubChem | |||||||||||||||||||||||||||
DrugBank | |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
Podobne związki | |||||||||||||||||||||||||||
Podobne związki |
woda, hydrazyna, difluorek tlenu | ||||||||||||||||||||||||||
Pochodne | |||||||||||||||||||||||||||
Jeżeli nie podano inaczej, dane dotyczą stanu standardowego (25 °C, 1000 hPa) |
Nadtlenek wodoru, H
2O
2 – nieorganiczny związek chemiczny z grupy nadtlenków, jedna z reaktywnych form tlenu[4]. Otrzymany został po raz pierwszy przez Louisa Thénarda w 1818 roku w reakcji nadtlenku baru z kwasem azotowym[5].
Układ wiązań O−O−H wokół atomów tlenu w cząsteczce H
2O
2 jest nieliniowy (podobnie jak układ H−O−H w wodzie), ponadto atomy H−O−O−H tworzą kąt dwuścienny (w fazie stałej około 90°).
Pierwszą i obecnie już tylko historyczną metodą otrzymywania nadtlenku wodoru na skalę przemysłową był proces Thénarda[6][7]:
Obecnie otrzymuje się go najczęściej tzw. metodą antrachinonową przez utlenianie 2-etylo-9,10-antracenodiolu gazowym tlenem przepuszczanym przez roztwór tego związku w mieszaninie odpowiednio dobranych rozpuszczalników[6][7]. Nadtlenek oddziela się poprzez ekstrakcję z wodą, zaś pozostały w roztworze 2-etyloantrachinon poddaje się regeneracji poprzez redukcję gazowym wodorem do 2-etylo-9,10-antracenodiolu, katalizowaną palladem osadzonym na odpowiednim nośniku lub związkami niklu. W przemysłowych metodach produkcji cykl obu reakcji (utleniania i redukcji) prowadzi się naprzemiennie.
Rozcieńczony roztwór wodny nadtlenku otrzymany w tym procesie zatęża się przez ostrożne odparowywanie wody pod zmniejszonym ciśnieniem, uzyskując w ten sposób roztwór o stężeniu maksymalnie 70%. Dalsze zatężanie prowadzi do wybuchu. Bardziej stężone roztwory oraz całkowicie czysty nadtlenek uzyskuje się prawdopodobnie przez wymrażanie go z wodnego, stężonego roztworu[8].
W Polsce jedynym producentem nadtlenku wodoru są należące do Grupy Azoty Zakłady Azotowe „Puławy” SA Funkcjonująca od 1995 roku instalacja zapewnia produkcję na poziomie 10 tysięcy ton rocznie. W roku 1997 dobudowano instalację do oczyszczania oraz zatężania nadtlenku wodoru wg technologii szwajcarskiej firmy Sulzer Chemtech, poszerzając tym samym ofertę o nowe stężenia nadtlenku wodoru. Od 2015 roku stabilizowane roztwory wodne nadtlenku wodoru wytwarzane w puławskich zakładach są dopuszczone do sprzedaży na rynkach UE w stężeniach 35%, 49,5%, 50% i 60%, zgodnie z obowiązującymi przepisami. Produkt jest eksportowany na rynki zagraniczne do krajów takich jak Litwa, Łotwa, Słowacja czy Węgry[9].
Inną, rzadziej stosowaną metodą, jest utlenianie izopropanolu:
Reakcja ma przebieg wolnorodnikowy i nie wymaga dodatkowych katalizatorów, gdyż jest katalizowana przez H
2O
2 (do substratu dodaje się niewielką jego ilość aby przyspieszyć fazę początkową). Jej drugim produktem przemysłowym jest aceton. Metoda ta stosowana była w drugiej połowie XX w.; w pierwszej dekadzie XXI w. działały już tylko dwie instalacje w byłym ZSRR. Takiej samej reakcji ulegają inne alkohole, jednak w przypadku alkoholi pierwszorzędowych powstające aldehydy ulegają utlenianiu przez H
2O
2 do kwasów karboksylowych, co wyklucza ich wykorzystanie w tym procesie[7].
Nadtlenek wodoru można też otrzymywać metodą elektrolityczną z H
2SO
4 lub NH
4HSO
4[7]:
W obu przypadkach H
2O
2 uzyskuje się następnie przez hydrolizę[7]:
Nadtlenek wodoru w temperaturze pokojowej jest syropowatą, bezbarwną (stężony staje się bladoniebieski) cieczą o temperaturze topnienia −0,44 °C i temperaturze wrzenia około 150 °C. Ma silne właściwości utleniające, wynikające z powstawania w czasie jego rozkładu tlenu atomowego (tak zwany tlen in statu nascendi[10]):
Czysty nadtlenek wodoru jest nietrwały – ulega egzotermicznemu rozkładowi (często wybuchowemu), na wodę i tlen, pod wpływem ciepła, światła nadfioletowego oraz kontaktu z niektórymi metalami (na przykład manganem) i tlenkami metali.
Rozkład ten jest katalizowany przez wiele rozdrobnionych substancji, na przykład srebro, platynę i tlenek manganu(IV)[6].
Jej rozkład katalizują też jodki[11], przy czym H
2O
2 utlenia I−
do I
2[12][13], a reakcja H
2O
2 z jodem (lub jodanami) ma charakter reakcji oscylacyjnej[14]:
Wydajnym enzymem rozkładającym nadtlenek wodoru jest katalaza.
Ze względu na to, że łatwo reaguje on z wieloma metalami, a także ulega rozkładowi w kontakcie ze szkłem, należy go przechowywać w ciśnieniowych butelkach z grubościennego polietylenu lub aluminium i nie wystawiać na działanie światła dziennego oraz źródeł ciepła. Jego kompleks z węglanem sodu typu hydratu (Na
2CO
3·1,5H
2O
2, tak zwany nadwęglan sodu) jest natomiast względnie trwały i bezpieczny w użyciu[15].
Nadtlenek wodoru wykazuje słabe właściwości kwasowe. W roztworach wodnych ulega on dysocjacji według równania[16]:
Wobec reduktorów nadtlenek wodoru zachowuje się jak utleniacz (O-I
→ O-II
), na przykład[16]:
Wobec utleniaczy wykazuje właściwości redukujące (O-I
→ O0
), między innymi w reakcji z nadmanganianem potasu w środowisku kwaśnym[16]:
lub z solami srebra(I) w środowisku zasadowym[16]:
Jest to substancja żrąca wobec żywych tkanek[1]. Przy kontakcie ze skórą pojawiają się białe martwicze plamy.
Najczęstszą postacią handlową jest tak zwany perhydrol, czyli jego 30% roztwór wodny, oraz roztwór 3%, nazywany wodą utlenioną[10].
Jest stosowana do odkażania powierzchownych ran, a po rozcieńczeniu wodą, w stosunku około 1:50, do płukania jamy ustnej w stanach zapalnych[17][18]. Takie roztwory do bezpośredniego użycia dostępne są w aptekach. Woda utleniona jest też składnikiem preparatów złożonych o podobnym przeznaczeniu, na przykład płukanki Parmy.
Woda utleniona rozkłada się przy kontakcie z krwią i peroksydazami, gwałtownie wydzielając tlen i spieniając okolice zranienia. Powszechnie uważa się, że pozwala to na wyczyszczenie i oddzielenie zabrudzeń oraz bakterii z zakamarków tkanek otaczających zranienie[1], jednak pogląd ten nie ma większego oparcia w faktach[19], a samo stosowanie wody utlenionej do odkażania ran ma wady[19]. Woda utleniona ma naturalne właściwości hemolityczne, a ponadto może prowadzić do oddzielania się świeżego nabłonka od ziarniny w miejscu zranienia[19]. Właściwości bakteriobójcze wody utlenionej przy opatrywaniu zranień są słabe i krótkotrwałe[19], a stosowanie jej nie zmniejsza ryzyka zakażenia[20][21], a w pewnych przypadkach może opóźnić gojenie się zranień[22][23]. Według innego opracowania woda utleniona nie ma znaczącego negatywnego wpływu na gojenie się ran – ale także nie obniża ryzyka zakażenia (głównie z powodu obniżonej aktywności w rozcieńczonych roztworach, osłabianej dodatkowo przez katalazy bakteryjne i z otaczających zranienie tkanek)[20]. Z tego powodu woda utleniona może co najwyżej wspomagać opatrywanie zranień obficie pokrytych zaschniętą lub zakrzepłą krwią, w czym pomagać mają jej właściwości hemolityczne[19].
Roztwory wody utlenionej są zalecane w pseudonaukowej metodzie leczącej jakoby niektóre rodzaje nowotworów, a także inne schorzenia, poprzez wywoływanie tak zwanej hiperoksygenacji. W oparciu o badania naukowe, American Cancer Society całkowicie neguje skuteczność takich terapii i odradza je jako alternatywę dla ustalonych medycznych procedur leczenia nowotworów[24].
Roztwory 3–15% są zwykle stosowane jako wybielacz na bazie aktywnego tlenu w środkach chemii gospodarczej, roztwory 3–12% są stosowane we fryzjerstwie do farbowania i rozjaśniania włosów.
Perhydrol stosuje się jako silny środek utleniający w przemyśle chemicznym, na przykład do produkcji barwników organicznych, a także inicjatorów nadtlenkowych (w tym heksametylenotriperoksydiaminy oraz trimerycznego i tetramerycznego nadtlenku acetonu).
Nadtlenek wodoru o stężeniu 85–98% stosowany jest jako utleniacz paliwa rakietowego oraz paliwa do okrętów podwodnych[25]. Roztwór 60% był używany już podczas II wojny światowej przez Niemców w rakietach V2[1] i samolotach Messerschmitt Me 163 (pod kryptonimem T-Stoff i innymi) oraz okrętach podwodnych i torpedach (pod kryptonimem Ingolin, Aurol i innymi). Nadtlenek wodoru był wykorzystywany w silnikach rakietowych na satelitach serii Syncom[26]. Obecnie jest stosowany jako utleniacz na rakietach suborbitalnych ILR-33 BURSZTYN[27] oraz Nucleus[28].
Wyciek wysoko skoncentrowanego do wartości między 85% a 98% nadtlenku wodoru (noszącego w takim stężeniu angielską nazwę high test peroxide – HTP), używanego jako utleniacz dla paliwa w przenoszonych przez okręt podwodny „Kursk” ciężkich torpedach przeciwokrętowych 65-76 Kit był w 2000 roku przyczyną wybuchu na tym okręcie, który następnie zatonął wraz z całą 118-osobową załogą[29].