Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

In matematica un campo di numeri (o campo numerico) è un'estensione finita del campo dei numeri razionali. Questo significa che è un campo contenente ed ha dimensione finita come spazio vettoriale su .

Lo studio dei campi di numeri e, più in generale, delle estensioni del campo dei numeri razionali, è uno degli argomenti principali della teoria algebrica dei numeri.

Definizione

Un campo algebrico di numeri o più semplicemente un campo di numeri è per definizione un sottocampo del campo dei numeri complessi che sia un'estensione di grado finito del campo dei numeri razionali .

Esempi

  • Un primo esempio banale è il campo dei numeri razionali , che è esso stesso un campo di numeri, essendo un'estensione di grado di .
  • Un "non" esempio è , che è un'estensione di ma il suo grado è infinito, per cui non è un campo di numeri. Per vedere che , basta ricordare che ha cardinalità del continuo, mentre è numerabile.

Anelli di interi algebrici

Sappiamo dalla teoria dei campi che data un'estensione , un elemento è detto algebrico su se è radice di un polinomio monico , e chiamiamo estensioni algebriche le estensioni di campi i cui elementi sono tutti algebrici; in particolare se chiamiamo numero algebrico un elemento che sia algebrico su , inoltre se è radice di un polinomio monico a coefficienti in diremo che è un intero algebrico.

Ora, dato un campo di numeri , definiamo (si dimostra che è un anello), si definisce anello degli interi algebrici di .

In generale dato un campo di numeri , il rispettivo anello degli interi non è un UFD (vedi esempio sotto), ma è possibile dimostrare che gode di altre interessanti proprietà, in particolare, che è un dominio di Dedekind, per cui ammette una fattorizzazione unica in termini di ideali primi.

Esempio

Dato il campo quadratico , si ha (in realtà si può dimostrare che ), per cui abbiamo

dunque non è UFD.

Bibliografia

  • (EN) Gerald J. Janusz, Algebraic Number Fields, 2nd, Providence, R.I., American Mathematical Society, 1996 1997, ISBN 978-0-8218-0429-2.
  • (EN) Serge Lang, Algebraic Number Theory, second edition, Springer, 2000
  • (EN) Richard A. Mollin, Algebraic Number Theory, CRC, 1999
  • (EN) Ram Murty, Problems in Algebraic Number Theory, Second Edition, Springer, 2005
  • (EN) Władysław Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer Monographs in Mathematics, 3ª ed., Berlin, Springer-Verlag, 2004, ISBN 978-3-540-21902-6, MR 2078267.
  • (EN) Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, vol. 322, Berlin, New York, Springer-Verlag, 1999, ISBN 978-3-540-65399-8, MR 1697859, Zbl 0956.11021.
  • (EN) Jürgen Neukirch, Alexander Schmidt e Kay Wingberg, Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, Berlin, New York, Springer-Verlag, 2000, ISBN 978-3-540-66671-4, MR 1737196, Zbl 1136.11001.
  • (EN) André Weil, Basic Number Theory, third edition, Springer, 1995

Voci correlate

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica