Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
En mathématiques, plus précisément en topologie, la topologie discrète sur un ensemble est une structure d'espace topologique où, de façon intuitive, tous les points sont « isolés » les uns des autres.
Soit X un ensemble. L'ensemble des parties de X définit une topologie sur X appelée topologie discrète. X muni de cette topologie est alors appelé espace discret.
On dit qu'une partie A d'un espace topologique X est un ensemble discret lorsque la topologie induite sur A est la topologie discrète.
La topologie discrète est la topologie possédant le plus d'ouverts qu'il soit possible de définir sur un ensemble X, en d'autres termes la topologie la plus fine possible. En ce sens, c'est l'opposé de la topologie grossière.
Parmi les autres propriétés d'un espace topologique discret X :
Les propriétés suivantes caractérisent les espaces discrets et les espaces finis discrets :
Enfin :