Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
La hauteur mesure l'étendue de quelque chose selon la verticale. La hauteur prend néanmoins diverses significations suivant le domaine où elle est utilisée.
En métrologie (science des mesures), la hauteur est la distance verticale entre un point (ou un objet assimilé à un point) et un niveau de référence spécifié. Par extension, c'est aussi la dimension d'un objet, prise dans la direction verticale. Voir Système international d'unités.
En altimétrie et en géographie, la hauteur est la distance géométrique entre un point et son projeté sur l'ellipsoïde (selon la normale à cette dernière). La notion de hauteur ne doit pas être confondue avec l'altitude (H) d'un point terrestre, qui se calcule à partir du géoïde (équipotentielle du champ de pesanteur proche du niveau moyen des mers) ou d'un quasi-géoïde selon le type d'altitude utilisé (altitude normale, altitude orthométrique...).
La hauteur est un segment de droite perpendiculaire qui passe par le sommet d'un polygone, d'un cylindre ou d'une pyramide jusqu'à sa base.
La hauteur d'un triangle est la droite issue d'un sommet et qui est perpendiculaire au côté opposé. Exemple : Dans un triangle ABC, la hauteur H issue du sommet A est perpendiculaire au côté [BC].
En algèbre, la hauteur d'un élément g d'un groupe abélien A est un invariant qui capture ses propriétés de divisibilité : c'est le plus grand entier naturel N tel que l'équation Nx = g a une solution x ∈ A, ou le symbole ∞ si le plus grand nombre avec cette propriété n'existe pas.
En géométrie algébrique et en théorie des nombres, la notion de hauteur désigne une mesure de la « complexité algébrique » d'un objet, généralement d'une solution d'une équation diophantienne[1],[2]. Leur intérêt vient entre autres de l'observation que des faits géométriques exprimés en termes de diviseurs se traduisent souvent en faits arithmétiques exprimés en termes de hauteurs[3],[4],[5].
En astronomie, la hauteur est l'angle que fait la direction visée par rapport à l'horizontale ; c'est le complément de la distance zénithale. La hauteur et l'azimut constituent le système de coordonnées horizontales.
Ces définitions sont communes à tous ceux qui se déplacent dans l'air, du vol long-courrier au parachutiste.
En musique, la hauteur est celui des caractères d'un son qui le place dans un ensemble mélodique ou harmonique, et détermine en solfège la position en hauteur de la note de musique sur la portée. La hauteur d'un son correspond à sa fréquence exprimée en hertz : par exemple la note de musique "La" de référence pour l'accord des instruments de l'orchestre est aujourd'hui fixée à 440 Hz.
Dans d'autres domaines, le mot peut être employé à chaque fois que la notion de niveau est utilisée.