Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
The Kalman–Yakubovich–Popov lemma is a result in system analysis and control theory which states: Given a number , two n-vectors B, C and an n x n Hurwitz matrix A, if the pair is completely controllable, then a symmetric matrix P and a vector Q satisfying
exist if and only if
Moreover, the set is the unobservable subspace for the pair .
The lemma can be seen as a generalization of the Lyapunov equation in stability theory. It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain.
The Kalman–Popov–Yakubovich lemma which was first formulated and proved in 1962 by Vladimir Andreevich Yakubovich[1] where it was stated that for the strict frequency inequality. The case of nonstrict frequency inequality was published in 1963 by Rudolf E. Kálmán.[2] In that paper the relation to solvability of the Lur’e equations was also established. Both papers considered scalar-input systems. The constraint on the control dimensionality was removed in 1964 by Gantmakher and Yakubovich[3] and independently by Vasile Mihai Popov.[4] Extensive reviews of the topic can be found in [5] and in Chapter 3 of.[6]
Given with for all and controllable, the following are equivalent:
The corresponding equivalence for strict inequalities holds even if is not controllable. [7]
{{cite book}}
: CS1 maint: multiple names: authors list (link)
{{cite book}}
: CS1 maint: multiple names: authors list (link)