Search for LIMS content across all our Wiki Knowledge Bases.
Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Activin and inhibin are two closely related proteincomplexes that have almost directly opposite biological effects. Identified in 1986,[1][2] activin enhances FSHbiosynthesis and secretion, and participates in the regulation of the menstrual cycle. Many other functions have been found to be exerted by activin, including roles in cell proliferation, differentiation, apoptosis,[3]metabolism, homeostasis, immune response, wound repair,[4] and endocrine function. Conversely, inhibin downregulates FSH synthesis and inhibits FSH secretion.[5] The existence of inhibin was hypothesized as early as 1916; however, it was not demonstrated to exist until Neena Schwartz and Cornelia Channing's work in the mid-1970s, after which both proteins were molecularly characterized ten years later.[6]
Activin is a dimer composed of two identical or very similar beta subunits. Inhibin is also a dimer wherein the first component is a beta subunit similar or identical to the beta subunit in activin. However, in contrast to activin, the second component of the inhibin dimer is a more distantly-related alpha subunit.[7][8] Activin, inhibin and a number of other structurally related proteins such as anti-Müllerian hormone, bone morphogenetic protein, and growth differentiation factor belong to the TGF-β protein superfamily.[9]
Structure
The activin and inhibin protein complexes are both dimeric in structure, and, in each complex, the two monomers are linked to one another by a single disulfide bond.[10] In addition, both complexes are derived from the same family of related genes and proteins but differ in their subunit composition.[7] Below is a list of the most common inhibin and activin complexes and their subunit composition:
The alpha and beta subunits share approximately 25% sequence similarity, whereas the similarity between beta subunits is approximately 65%.[9]
In mammals, four beta subunits have been described, called activin βA, activin βB, activin βC and activin βE. Activin βA and βB are identical to the two beta subunits of inhibin. A fifth subunit, activin βD, has been described in Xenopus laevis. Two activin βA subunits give rise to activin A, one βA, and one βB subunit gives rise to activin AB, and so on. Various, but not all theoretically possible, heterodimers have been described.[11][12] The subunits are linked by a single covalent disulfide bond.
The βC subunit is able to form activin heterodimers with βA or βB subunits but is unable to dimerize with inhibin α.[13]
Activin is strongly expressed in wounded skin, and overexpression of activin in epidermis of transgenicmice improves wound healing and enhances scar formation. Its action in wound repair and skin morphogenesis is through stimulation of keratinocytes and stromal cells in a dose-dependent manner.[14]
Activin also regulates the morphogenesis of branching organs such as the prostate, lung, and especially kidney. Activin A increased the expression level of type-I collagen suggesting that activin A acts as a potent activator of fibroblasts.
Lack of activin during development results in neural developmental defects.
Upregulation of Activin A drives pluripotent stem cells into a mesoendodermal fate, and thus provides a useful tool for stem cell differentiation and organoid formation.[15]
Inhibin
In both females and males, inhibin inhibits FSH production. Inhibin does not inhibit the secretion of GnRH from the hypothalamus.[16][17] However, the overall mechanism differs between the sexes:
As with other members of the superfamily, activins interact with two types of cell surface transmembrane receptors (Types I and II) which have intrinsic serine/threonine kinase activities in their cytoplasmic domains:
Activin binds to the Type II receptor and initiates a cascade reaction that leads to the recruitment, phosphorylation, and activation of Type I activin receptor. This then interacts with and then phosphorylates SMAD2 and SMAD3, two of the cytoplasmic SMAD proteins.
Smad3 then translocates to the nucleus and interacts with SMAD4 through multimerization, resulting in their modulation as transcription factor complexes responsible for the expression of a large variety of genes.
Inhibin
In contrast to activin, much less is known about the mechanism of action of inhibin, but may involve competing with activin for binding to activin receptors and/or binding to inhibin-specific receptors.[8]
A mutation in the gene for the activin receptor ACVR1 results in fibrodysplasia ossificans progressiva, a fatal disease that causes muscle and soft tissue to gradually be replaced by bone tissue.[21] This condition is characterized by the formation of an extra skeleton that produces immobilization and eventually death by suffocation.[21] The mutation in ACVR1 causes activin A, which normally acts as an antagonist of the receptor and blocks osteogenesis (bone growth), to behave as an agonist of the receptor and to induce hyperactive bone growth.[21] On 2 September 2015, Regeneron Pharmaceuticals announced that they had developed an antibody for activin A that effectively cures the disease in an animal model of the condition.[22]
Quantification of inhibin A is part of the prenatal quad screen that can be administered during pregnancy at a gestational age of 16–18 weeks. An elevated inhibin A (along with an increased beta-hCG, decreased AFP, and a decreased estriol) is suggestive of the presence of a fetus with Down syndrome.[28] As a screening test, abnormal quad screen test results need to be followed up with more definitive tests.
Inhibin B may be used as a marker of spermatogenesis function and male infertility. The mean serum inhibin B level is significantly higher among fertile men (approximately 140 pg/mL) than in infertile men (approximately 80 pg/mL).[31] In men with azoospermia, a positive test for inhibin B slightly raises the chances for successfully achieving pregnancy through testicular sperm extraction (TESE), although the association is not very substantial, having a sensitivity of 0.65 (95% confidence interval [CI]: 0.56–0.74) and a specificity of 0.83 (CI: 0.64–0.93) for prediction the presence of sperm in the testes in non-obstructive azoospermia.[32]
References
^Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, et al. (1986). "Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid". Nature. 321 (6072): 776–9. Bibcode:1986Natur.321..776V. doi:10.1038/321776a0. PMID3012369. S2CID4365045.
^Sulyok S, Wankell M, Alzheimer C, Werner S (October 2004). "Activin: an important regulator of wound repair, fibrosis, and neuroprotection". Molecular and Cellular Endocrinology. 225 (1–2): 127–32. doi:10.1016/j.mce.2004.07.011. PMID15451577. S2CID6943949.
^ abBurger HG, Igarashi M (April 1988). "Inhibin: definition and nomenclature, including related substances". The Journal of Clinical Endocrinology and Metabolism. 66 (4): 885–6. PMID3346366.
^Ying SY (December 1987). "Inhibins and activins: chemical properties and biological activity". Proceedings of the Society for Experimental Biology and Medicine. 186 (3): 253–64. doi:10.3181/00379727-186-42611a. PMID3122219. S2CID36872324.
^Xu P, Hall AK (November 2006). "The role of activin in neuropeptide induction and pain sensation". Developmental Biology. 299 (2): 303–9. doi:10.1016/j.ydbio.2006.08.026. PMID16973148.
^Luisi S, Florio P, Reis FM, Petraglia F (2005). "Inhibins in female and male reproductive physiology: role in gametogenesis, conception, implantation and early pregnancy". Human Reproduction Update. 11 (2): 123–35. doi:10.1093/humupd/dmh057. PMID15618291.
^ abcShore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. (May 2006). "A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva". Nature Genetics. 38 (5): 525–527. doi:10.1038/ng1783. PMID16642017. S2CID41579747.
^Robertson DM, Pruysers E, Jobling T (April 2007). "Inhibin as a diagnostic marker for ovarian cancer". Cancer Letters. 249 (1): 14–7. doi:10.1016/j.canlet.2006.12.017. PMID17320281.
^Robertson DM, Pruysers E, Burger HG, Jobling T, McNeilage J, Healy D (October 2004). "Inhibins and ovarian cancer". Molecular and Cellular Endocrinology. 225 (1–2): 65–71. doi:10.1016/j.mce.2004.02.014. PMID15451569. S2CID33801243.