Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case.

Definition

Let G be a Lie group with Lie algebra , and PB be a principal G-bundle. Let ω be an Ehresmann connection on P (which is a -valued one-form on P).

Then the curvature form is the -valued 2-form on P defined by

(In another convention, 1/2 does not appear.) Here stands for exterior derivative, is defined in the article "Lie algebra-valued form" and D denotes the exterior covariant derivative. In other terms,[1]

where X, Y are tangent vectors to P.

There is also another expression for Ω: if X, Y are horizontal vector fields on P, then[2]

where hZ means the horizontal component of Z, on the right we identified a vertical vector field and a Lie algebra element generating it (fundamental vector field), and is the inverse of the normalization factor used by convention in the formula for the exterior derivative.

A connection is said to be flat if its curvature vanishes: Ω = 0. Equivalently, a connection is flat if the structure group can be reduced to the same underlying group but with the discrete topology.

Curvature form in a vector bundle

If EB is a vector bundle, then one can also think of ω as a matrix of 1-forms and the above formula becomes the structure equation of E. Cartan:

where is the wedge product. More precisely, if and denote components of ω and Ω correspondingly, (so each is a usual 1-form and each is a usual 2-form) then

For example, for the tangent bundle of a Riemannian manifold, the structure group is O(n) and Ω is a 2-form with values in the Lie algebra of O(n), i.e. the antisymmetric matrices. In this case the form Ω is an alternative description of the curvature tensor, i.e.

using the standard notation for the Riemannian curvature tensor.

Bianchi identities

If is the canonical vector-valued 1-form on the frame bundle, the torsion of the connection form is the vector-valued 2-form defined by the structure equation

where as above D denotes the exterior covariant derivative.

The first Bianchi identity takes the form

The second Bianchi identity takes the form

and is valid more generally for any connection in a principal bundle.

The Bianchi identities can be written in tensor notation as:

The contracted Bianchi identities are used to derive the Einstein tensor in the Einstein field equations, the bulk of general theory of relativity.[clarification needed]

Notes

  1. ^ since . Here we use also the Kobayashi convention for the exterior derivative of a one form which is then
  2. ^ Proof:

References

See also