Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
In biochemistry, the conformation–activity relationship is the relationship between the biological activity and the chemical structure or conformational changes of a biomolecule. This terminology emphasizes the importance of dynamic conformational changes for the biological function, rather than the importance of static three-dimensional structure used in the analysis of structure–activity relationships.[1]
The conformational changes usually take place during intermolecular association, such as protein–protein interaction or protein–ligand binding. A binding partner changes the conformation of a biomolecule (e.g. a protein) to enable or disable its biochemical activity.
Methods for analysis of conformation activity relationship vary from in silico[2] or using experimental methods such as X-ray crystallography and NMR where the conformation before and after activity can be compared statically or using dynamic methods such as multi-parametric surface plasmon resonance, dual-polarisation interferometry or circular dichroism where the kinetics as well as degree of conformational change can be quantified.
Static experimental techniques include X-ray crystallography and NMR.
Dynamic experimental techniques include multi-parametric surface plasmon resonance, dual-polarization interferometry, and circular dichroism.