Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Probability density function | |||
Cumulative distribution function | |||
Parameters |
(real) (real) For ease of notation, let , and | ||
---|---|---|---|
Support | |||
CDF | |||
Mean | |||
Median | no closed form | ||
Mode | |||
Variance | |||
Skewness | |||
MGF | |||
CF |
In population genetics, the Balding–Nichols model is a statistical description of the allele frequencies in the components of a sub-divided population.[1] With background allele frequency p the allele frequencies, in sub-populations separated by Wright's FST F, are distributed according to independent draws from
where B is the Beta distribution. This distribution has mean p and variance Fp(1 – p).[2]
The model is due to David Balding and Richard Nichols and is widely used in the forensic analysis of DNA profiles and in population models for genetic epidemiology.