Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Mikroniti – poznatije pod posvojenicama mikrofilamenti ili aktinski filamenti – su najtanje niti citoskeleta, strukture koja se nalazi u citoplazmi eukariotskih ćelija. Ovi linearni polimeri aktinskih podjedinica su savitljivi, a relativno jaki, otporni na izvijanje pod snagom pritiska multi-pikonjutna, a lomi se pri nanonjutnovskoj vučnoj sili. Mikrofilamenti su vrlo svestrani, jer funkcioniraju u citokinezi, amoeboidnim pokretima i promjenama oblika ćelije. U usmjeravanju ćelijskee pokretljivosti, jedan kraj aktinskog filamenta se izdužuje dok je drugi kraj skuplja, pretpostavlja se, aktivnošću molekulskih motora miozina II.[1]
Dakle, mikrofilamenti su tanke bjelančevinske niti promjera oko 7 nm, pa se ne mogu uočiti pod svjetlosnim mikroskopom, a otkrivene su pomoći elektronske mikroskopije glavni gradivni sastojak im je aktin, pri čemu su dva aktinska lanca međusobno spiralno isprepleteni u citoplazmi svih ćelija, gdje su povezani u snopove ili mrežu preko aktin-veznih bjelančevinama. Najgušći su uz ćelijske membrane. Često se nalaze skupa s mikrtubulama, kao u ranoj profazi neposredno ispod plazma membrane, gdje se javlja gusti snop mikrotubula i i mikrofilamenata u obliku pretprofaznog prstena koji podržavaju fragmosom.[2][3][4][5]
Aktinska vlakna su sastavljena u obliku dva osnovna tipa strukture: snopovi i mreža. Paketi mogu biti sastavljeni od polarnih filamentnih nizova, u kojojima su svi bodljikavom krajevi, koji ukazuju na isti kraj snopa, ili su nepolarne matrice, gdje bodljikavi završeci ukazuju na oba kraja. Klasa aktin-vežućih peoteina, zove unakrsno vezani proteini, koji diktiraju formiranje ovih struktura. Ovi proteini određuju i orijentaciju filamenata i razmak u snopovima i mreži. Ove strukture su regulirane mnogim drugim klasama aktin-vezanih proteina, uključujući i motorne proteine, granate proteine, razdvajajuće proteine, promotore polimerizacije i ograničavajuće proteine.
Mikroniti imaju promjer oko 6 nanometara, pa su najtanja vlakna citoskeleta. Oni su polimeri aktinske podjedinice (loptasti aktin ili G-aktin), koje se kao dio vlakana nazivaju vlaknasti aktin ili F-aktin. Svako mikrovlakno se sastoji od dvije spiralno isprepletene niti podjedinica. Slično kao i mikrotubule, aktinska vlakna su polarizirana. Electronski mikrografi su pružili dokaze o njihovim brzorastućim bodljikavim krajevima i sporom rastu šiljatog kraja. Ovaj polaritet je određen stvaranjem uzorka sa vezanim miozinskim S1 fragmentom: oni sami su podjedinice većih miozin II proteinskih kompleksa. Šiljati kraj se obično naziva kao minus (& minus;) kraj, a bodljikavi je plus (+) kraj.[6] Aktinska polimerizacija in vitro ili nukleacija, počinje sa samoudruživanjem tri G-aktin monomera koji formiraju trimer. Adenozin trifosfat-vezani aktin se onda veže za bodljikavi kraj, a ATP se naknadno hidrolizira. Hidroliza ATP nastaje sa poluvremenom od oko 2 sekunde,[7] dok je poluvrijeme za disocijaciju anorganskog fosfata oko 6 minuta. .[7] Ovaj autokatalitski događaj smanjuje snagu vezanje između susjednih podjedinica, a time i općenito destabilizira filament. Polimerizacija aktina in vivo se katalizira klasom praćenja filamenata molekulskih motora, koji su poznati kao aktoklampini. Nedavni dokazi ukazuju na to da su stopa ATP hidrolize i stopa inkorporacije monomera snažno povezane.
Nakon toga, ADP-aktin se odvaja lagano od šiljastog kraja, a proces je znatno ubrzan aktin-vezanim proteinom, kofilinom. ADP-vezani kofilin kida ADP-bogate regije najbližih (−)-krajeva. Po izlasku, slobodni aktinski monomeri se polahko odvajaju od ADP, koji se brzo veže – ostvarujući slobodnu difuziju ATP-a u citosolu. Time se formiraju ATP-aktin monomerne jedinice koje su potrebnih za daljnje istezanje bodljikavog kraja end filamenta. Ovaj brzi promet je važan za kretanje ćelije. Kraj-ograničavajući proteini, kao što su CAPZ sprečavaju dodavanje ili gubitak monomera na kraju filamenta, što je nepovoljno, jer je u aparat mišićnog aktina u prometu.
Polimerizacija aktina uz ograničavajuće proteine je nedavno primijenjena za kontrolu 3-dimenzijskog rasta proteinskog filamenta, kako bi se otkrila 3D topologija koja je korisna u tehnologiji i izradi električnih veza. Električna provodljivost se dobija metalizacijom proteinske 3D strukture.[8][9]
|author=
(pomoć)
|author=
(pomoć)
|chapterurl=
(pomoć)