Infrastructure tools to support an effective radiation oncology learning health system
สารบัญ
พื้นที่ คือ ปริมาณของพื้นผิวหรือรูปร่างสองมิติ ที่แสดงถึงขอบเขตเนื้อที่ในแนวแผ่นระนาบ พื้นที่สามารถเข้าใจได้ว่าเป็นจำนวนวัสดุที่หนาขนาดหนึ่งเท่าที่จำเป็นที่จะประกอบขึ้นเป็นรูปร่าง หรือปริมาณสีทาเท่าที่จำเป็นที่จะทาผิวหน้าในครั้งเดียว[1] พื้นที่เป็นมโนทัศน์ในสองมิติที่คล้ายคลึงกับความยาวของเส้นโค้งในหนึ่งมิติ หรือปริมาตรของทรงตันในสามมิติ
พื้นที่ของรูปร่างสามารถวัดได้โดยการเปรียบเทียบกับรูปสี่เหลี่ยมจัตุรัสที่มีขนาดตายตัวขนาดหนึ่ง[2] หน่วยมาตรฐานของพื้นที่ในหน่วยเอสไอคือ ตารางเมตร (m2) ซึ่งเป็นพื้นที่ของรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละหนึ่งเมตร[3] รูปร่างที่มีพื้นที่เท่ากับสามตารางเมตร จะเหมือนกับพื้นที่ของรูปสี่เหลี่ยมจัตุรัสเช่นนั้นสามรูป ในทางคณิตศาสตร์ หน่วยตารางหน่วยถูกนิยามขึ้นให้มีพื้นที่เท่ากับ "หนึ่ง" และพื้นที่ของรูปร่างหรือพื้นผิวอื่น ๆ ก็จะเป็นจำนวนจริงไร้มิติจำนวนหนึ่ง
สูตรคำนวณหาพื้นที่ของรูปร่างพื้นฐานหลายสูตรเป็นที่รู้จักโดยทั่วไป เช่น รูปสามเหลี่ยม รูปสี่เหลี่ยมมุมฉาก รูปวงกลม เป็นต้น จากการใช้สูตรเหล่านี้ พื้นที่ของรูปหลายเหลี่ยมใด ๆ สามารถหาได้จากการแบ่งรูปหลายเหลี่ยมเป็นรูปสามเหลี่ยม[4] ส่วนรูปร่างที่มีขอบเขตเป็นเส้นโค้งมักจะคำนวณพื้นที่ได้ด้วยแคลคูลัส (calculus)[5]
สำหรับรูปร่างทรงตันอย่างเช่นทรงกลม ทรงกรวย หรือทรงกระบอก พื้นที่บนผิวรอบนอกของรูปทรงเหล่านี้เรียกว่า พื้นที่ผิว[1][6] สูตรคำนวณพื้นที่ผิวของรูปทรงพื้นฐานต่าง ๆ สามารถหาได้ตั้งแต่ยุคกรีกโบราณ แต่การหาพื้นที่ผิวของรูปทรงที่ซับซ้อนยิ่งขึ้นต้องใช้แคลคูลัสหลายตัวแปร (multivariable calculus)
อ้างอิง
- ↑ 1.0 1.1 Eric W. Weisstein. "Area". Wolfram MathWorld. สืบค้นเมื่อ 3 July 2012.
- ↑ "Area Formulas". Math.com. เก็บจากแหล่งเดิมเมื่อ 2 July 2012. สืบค้นเมื่อ 2 July 2012.
- ↑ Bureau International des Poids et Mesures Resolution 12 of the 11th meeting of the CGPM (1960), retrieved 15 July 2012
- ↑ Mark de Berg; Marc van Kreveld; Mark Overmars; Otfried Schwarzkopf (2000). "Chapter 3: Polygon Triangulation". Computational Geometry (2nd revised ed.). Springer-Verlag. pp. 45–61. ISBN 3-540-65620-0.
- ↑ Boyer, Carl B. (1959). A History of the Calculus and Its Conceptual Development. Dover. ISBN 0-486-60509-4.
- ↑ Eric W. Weisstein. "Surface Area". Wolfram MathWorld. สืบค้นเมื่อ 3 July 2012.