Infrastructure tools to support an effective radiation oncology learning health system

In matematica, la matrice identità, anche detta matrice identica o matrice unità, è una matrice quadrata in cui tutti gli elementi della diagonale principale sono costituiti dal numero 1, mentre i restanti elementi sono 0. Viene indicata con oppure con , dove è il numero di righe della matrice.

Proprietà

  • La proprietà fondamentale di è che:
per ogni matrice e per cui sono definite queste moltiplicazioni di matrici.

Notazioni

Usando la notazione applicata talvolta per descrivere in modo conciso le matrici diagonali, si può scrivere:

Si può anche scrivere con la notazione delta di Kronecker:

Anello delle matrici

Dalla proprietà fondamentale segue che la matrice identità è l'elemento neutro della moltiplicazione nell'anello di tutte le matrici a valori in un campo fissato .

Analogamente, è l'elemento neutro nel gruppo generale lineare formato da tutte le matrici invertibili a valori in .

Trasformazioni lineari

Sia un campo. Ogni matrice quadrata induce una trasformazione lineare dallo spazio vettoriale in sé, definita nel modo seguente:

La matrice identità è così chiamata perché induce la funzione identità. Più in generale, la matrice identità è la matrice associata alla funzione identità da uno spazio vettoriale in sé, rispetto ad una qualsiasi base.

Bibliografia

  • (EN) Akivis, M. A. and Goldberg, V. V. An Introduction to Linear Algebra and Tensors. New York: Dover, 1972.
  • (EN) Ayres, F. Jr. Schaum's Outline of Theory and Problems of Matrices. New York: Schaum, p. 10, 1962.
  • (EN) Courant, R. and Hilbert, D. Methods of Mathematical Physics, Vol. 1. New York: Wiley, 1989.

Voci correlate

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica