Infrastructure tools to support an effective radiation oncology learning health system

A paradigm shift is a fundamental change in the basic concepts and experimental practices of a scientific discipline. It is a concept in the philosophy of science that was introduced and brought into the common lexicon by the American physicist and philosopher Thomas Kuhn. Even though Kuhn restricted the use of the term to the natural sciences, the concept of a paradigm shift has also been used in numerous non-scientific contexts to describe a profound change in a fundamental model or perception of events.

Kuhn presented his notion of a paradigm shift in his influential book The Structure of Scientific Revolutions (1962).

Kuhn contrasts paradigm shifts, which characterize a Scientific Revolution, to the activity of normal science, which he describes as scientific work done within a prevailing framework or paradigm. Paradigm shifts arise when the dominant paradigm under which normal science operates is rendered incompatible with new phenomena, facilitating the adoption of a new theory or paradigm.[1]

As one commentator summarizes:

Kuhn acknowledges having used the term "paradigm" in two different meanings. In the first one, "paradigm" designates what the members of a certain scientific community have in common, that is to say, the whole of techniques, patents and values shared by the members of the community. In the second sense, the paradigm is a single element of a whole, say for instance Newton's Principia, which, acting as a common model or an example... stands for the explicit rules and thus defines a coherent tradition of investigation. Thus the question is for Kuhn to investigate by means of the paradigm what makes possible the constitution of what he calls "normal science". That is to say, the science which can decide if a certain problem will be considered scientific or not. Normal science does not mean at all a science guided by a coherent system of rules, on the contrary, the rules can be derived from the paradigms, but the paradigms can guide the investigation also in the absence of rules. This is precisely the second meaning of the term "paradigm", which Kuhn considered the most new and profound, though it is in truth the oldest.[2]

History

The nature of scientific revolutions has been studied by modern philosophy since Immanuel Kant used the phrase in the preface to the second edition of his Critique of Pure Reason (1787). Kant used the phrase "revolution of the way of thinking" (Revolution der Denkart) to refer to Greek mathematics and Newtonian physics. In the 20th century, new developments in the basic concepts of mathematics, physics, and biology revitalized interest in the question among scholars.

Original usage

Kuhn used the duck-rabbit optical illusion, made famous by Wittgenstein, to demonstrate the way in which a paradigm shift could cause one to see the same information in an entirely different way.[3]

In his 1962 book The Structure of Scientific Revolutions, Kuhn explains the development of paradigm shifts in science into four stages:

  • Normal science – In this stage, which Kuhn sees as most prominent in science, a dominant paradigm is active. This paradigm is characterized by a set of theories and ideas that define what is possible and rational to do, giving scientists a clear set of tools to approach certain problems. Some examples of dominant paradigms that Kuhn gives are: Newtonian physics, caloric theory, and the theory of electromagnetism.[4] Insofar as paradigms are useful, they expand both the scope and the tools with which scientists do research. Kuhn stresses that, rather than being monolithic, the paradigms that define normal science can be particular to different people. A chemist and a physicist might operate with different paradigms of what a helium atom is.[5] Under normal science, scientists encounter anomalies that cannot be explained by the universally accepted paradigm within which scientific progress has thereto been made.
  • Extraordinary research – When enough significant anomalies have accrued against a current paradigm, the scientific discipline is thrown into a state of crisis. To address the crisis, scientists push the boundaries of normal science in what Kuhn calls “extraordinary research”, which is characterized by its exploratory nature.[6] Without the structures of the dominant paradigm to depend on, scientists engaging in extraordinary research must produce new theories, thought experiments, and experiments to explain the anomalies. Kuhn sees the practice of this stage – “the proliferation of competing articulations, the willingness to try anything, the expression of explicit discontent, the recourse to philosophy and to debate over fundamentals” – as even more important to science than paradigm shifts.[7]
  • Adoption of a new paradigm – Eventually a new paradigm is formed, which gains its own new followers. For Kuhn, this stage entails both resistance to the new paradigm, and reasons for why individual scientists adopt it. According to Max Planck, "a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."[8] Because scientists are committed to the dominant paradigm, and paradigm shifts involve gestalt-like changes, Kuhn stresses that paradigms are difficult to change. However, paradigms can gain influence by explaining or predicting phenomena much better than before (i.e., Bohr's model of the atom) or by being more subjectively pleasing. During this phase, proponents for competing paradigms address what Kuhn considers the core of a paradigm debate: whether a given paradigm will be a good guide for future problems – things that neither the proposed paradigm nor the dominant paradigm are capable of solving currently.[9]
  • Aftermath of the scientific revolution – In the long run, the new paradigm becomes institutionalized as the dominant one. Textbooks are written, obscuring the revolutionary process.

Features

Paradigm shifts and progress

A common misinterpretation of paradigms is the belief that the discovery of paradigm shifts and the dynamic nature of science (with its many opportunities for subjective judgments by scientists) are a case for relativism:[10] the view that all kinds of belief systems are equal. Kuhn vehemently denies this interpretation[11] and states that when a scientific paradigm is replaced by a new one, albeit through a complex social process, the new one is always better, not just different.

Incommensurability

These claims of relativism are, however, tied to another claim that Kuhn does at least somewhat endorse: that the language and theories of different paradigms cannot be translated into one another or rationally evaluated against one another—that they are incommensurable. This gave rise to much talk of different peoples and cultures having radically different worldviews or conceptual schemes—so different that whether or not one was better, they could not be understood by one another. However, the philosopher Donald Davidson published the highly regarded essay "On the Very Idea of a Conceptual Scheme"[12] in 1974 arguing that the notion that any languages or theories could be incommensurable with one another was itself incoherent. If this is correct, Kuhn's claims must be taken in a weaker sense than they often are. Furthermore, the hold of the Kuhnian analysis on social science has long been tenuous, with the wide application of multi-paradigmatic approaches in order to understand complex human behaviour.[13]

Gradualism vs. sudden change

Paradigm shifts tend to be most dramatic in sciences that appear to be stable and mature, as in physics at the end of the 19th century. At that time, physics seemed to be a discipline filling in the last few details of a largely worked-out system.

In The Structure of Scientific Revolutions, Kuhn wrote, "Successive transition from one paradigm to another via revolution is the usual developmental pattern of mature science" (p. 12). Kuhn's idea was itself revolutionary in its time as it caused a major change in the way that academics talk about science. Thus, it could be argued that it caused or was itself part of a "paradigm shift" in the history and sociology of science. However, Kuhn would not recognise such a paradigm shift. In the social sciences, people can still use earlier ideas to discuss the history of science.

Philosophers and historians of science, including Kuhn himself, ultimately accepted a modified version of Kuhn's model, which synthesizes his original view with the gradualist model that preceded it.[14]

Examples

Natural sciences

Some of the "classical cases" of Kuhnian paradigm shifts in science are:

Social sciences

In Kuhn's view, the existence of a single reigning paradigm is characteristic of the natural sciences, while philosophy and much of social science were characterized by a "tradition of claims, counterclaims, and debates over fundamentals."[26] Others have applied Kuhn's concept of paradigm shift to the social sciences.

Applied sciences

More recently, paradigm shifts are also recognisable in applied sciences:

Other uses

The term "paradigm shift" has found uses in other contexts, representing the notion of a major change in a certain thought pattern—a radical change in personal beliefs, complex systems or organizations, replacing the former way of thinking or organizing with a radically different way of thinking or organizing:

  • M. L. Handa, a professor of sociology in education at O.I.S.E. University of Toronto, Canada, developed the concept of a paradigm within the context of social sciences. He defines what he means by "paradigm" and introduces the idea of a "social paradigm". In addition, he identifies the basic component of any social paradigm. Like Kuhn, he addresses the issue of changing paradigms, the process popularly known as "paradigm shift". In this respect, he focuses on the social circumstances that precipitate such a shift. Relatedly, he addresses how that shift affects social institutions, including the institution of education.[31]
  • The concept has been developed for technology and economics in the identification of new techno-economic paradigms as changes in technological systems that have a major influence on the behaviour of the entire economy (Carlota Perez; earlier work only on technological paradigms by Giovanni Dosi). This concept is linked to Joseph Schumpeter's idea of creative destruction. Examples include the move to mass production and the introduction of microelectronics.[32]
  • Two photographs of the Earth from space, "Earthrise" (1968) and "The Blue Marble" (1972), are thought [by whom?] to have helped to usher in the environmentalist movement, which gained great prominence in the years immediately following distribution of those images.[33][34]
  • Hans Küng applies Thomas Kuhn's theory of paradigm change to the entire history of Christian thought and theology. He identifies six historical "macromodels": 1) the apocalyptic paradigm of primitive Christianity, 2) the Hellenistic paradigm of the patristic period, 3) the medieval Roman Catholic paradigm, 4) the Protestant (Reformation) paradigm, 5) the modern Enlightenment paradigm, and 6) the emerging ecumenical paradigm. He also discusses five analogies between natural science and theology in relation to paradigm shifts. Küng addresses paradigm change in his books, Paradigm Change in Theology[35] and Theology for the Third Millennium: An Ecumenical View.[36]
  • In the later part of the 1990s, 'paradigm shift' emerged as a buzzword, popularized as marketing speak and appearing more frequently in print and publication.[37] In his book Mind The Gaffe, author Larry Trask advises readers to refrain from using it, and to use caution when reading anything that contains the phrase. It is referred to in several articles and books[38][39] as abused and overused to the point of becoming meaningless.
  • The concept of technological paradigms has been advanced, particularly by Giovanni Dosi.

Criticism

In a 2015 retrospective on Kuhn,[40] the philosopher Martin Cohen describes the notion of the paradigm shift as a kind of intellectual virus – spreading from hard science to social science and on to the arts and even everyday political rhetoric today. Cohen claims that Kuhn had only a very hazy idea of what it might mean and, in line with the Austrian philosopher of science Paul Feyerabend, accuses Kuhn of retreating from the more radical implications of his theory, which are that scientific facts are never really more than opinions whose popularity is transitory and far from conclusive. Cohen says scientific knowledge is less certain than it is usually portrayed, and that science and knowledge generally is not the 'very sensible and reassuringly solid sort of affair' that Kuhn describes, in which progress involves periodic paradigm shifts in which much of the old certainties are abandoned in order to open up new approaches to understanding that scientists would never have considered valid before. He argues that information cascades can distort rational, scientific debate. He has focused on health issues, including the example of highly mediatised 'pandemic' alarms, and why they have turned out eventually to be little more than scares.[41]

See also

  • Accelerating change – Perceived increase in the rate of technological change throughout history
  • Attitude polarization – Tendency of a group to make more extreme decisions than the inclinations of its members
  • Belief perseverance – Maintaining a belief despite new information that firmly contradicts it
  • Buckminster Fuller – American philosopher, architect and inventor (1895–1983)
  • Cognitive bias – Systematic pattern of deviation from norm or rationality in judgment
  • Conceptual model – Theoretical framework
  • Confirmation bias – Bias confirming existing attitudes
  • Copernican Revolution – 16th to 17th century intellectual revolution
  • Critical juncture theory – Theory of large, discontinuous changes
  • Cultural bias – Interpretation and judgement of phenomena by the standards of one's culture
  • Disruptive innovation – Technological change
  • Don Tapscott – Canadian businessman (author of Paradigm Shift)
  • Epistemological break – Concept of knowledge theory
  • Gaston Bachelard – French philosopher
  • Globalization – Spread of world views, products, ideas, capital and labor
  • Human history
  • Infrastructure bias – the influence of existing social or scientific infrastructure on scientific observations
  • Innovation – Practical implementation of improvements
  • Inquiry – Any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem
  • Kondratiev wave – Hypothesized cycle-like phenomena in the modern world economy
  • Ludwik Fleck – Polish physician
  • Modeling – Theoretical framework
  • Mindset – Term in decision theory and general systems theory
  • New world order (politics) – Period of history with a dramatic change in world political thought
  • Planck's principle – Principle that scientific change is generational
  • Scientific modelling – Scientific activity that produces models
  • Statistical model – Type of mathematical model
  • Systemic bias – Inherent tendency of a process to support particular outcomes
  • Teachable moment – Time at which learning a particular idea becomes possible or easiest
  • World view – Fundamental cognitive orientation of an individual or society
  • Zeitgeist – Philosophical concept meaning "spirit of the age"

References

Citations

  1. ^ Kuhn, Thomas (1962). The Structure of Scientific Revolutions. pp. 54.
  2. ^ Agamben, Giorgio. "What is a Paradigm?" (PDF). Retrieved November 14, 2015.
  3. ^ Kuhn, 1970, p. 114
  4. ^ Kuhn, Thomas (1962). The Structure of Scientific Revolutions. pp. 28.
  5. ^ Kuhn, Thomas (1962). The Structure of Scientific Revolutions. pp. 50.
  6. ^ Kuhn, Thomas (1962). The Structure of Scientific Revolutions. pp. 87.
  7. ^ Kuhn, Thomas (1962). The Structure of Scientific Revolutions. pp. 91.
  8. ^ Quoted in Thomas Kuhn, The Structure of Scientific Revolutions (1970 ed.): p. 150.
  9. ^ Kuhn, Thomas (1962). The Structure of Scientific Revolutions. pp. 157.
  10. ^ Sankey, Howard (1997) "Kuhn's ontological relativism," in Issues and Images in the Philosophy of Science: Scientific and Philosophical Essays in Honour of Azarya Polikarov, edited by Dimitri Ginev and Robert S. Cohen. Dordrecht: Kluwer Academic, 1997. Boston studies in the philosophy of science, vol. 192, pp. 305–20. ISBN 0792344448
  11. ^ Thomas Kuhn, The Structure of Scientific Revolutions (3rd ed.): p. 199.
  12. ^ Donald Davidson (1974). "On the Very Idea of a Conceptual Scheme". Proceedings and Addresses of the American Philosophical Association. 47: 5–20.
  13. ^ see for example John Hassard (1993). Sociology and Organization Theory: Positivism, Paradigm and Postmodernity. Cambridge University Press. ISBN 0521350344.
  14. ^ Williams, Gene (2019). Applied Qualitative Research Design. EDTECH. p. 103. ISBN 978-1-83947-216-9. OCLC 1132359447.
  15. ^ Kuhn, 1970, pp. 154 and passim
  16. ^ Joutsivuo, T (1997). "[Vesalius and De humani corporis fabrica: Galen's errors and the change of anatomy in the sixteenth century]". Hippokrates (Helsinki): 98–112. PMID 11625189.
  17. ^ Kuhn, 1970, pp. 148 and passim
  18. ^ Paradigm Shifts: Technology & Culture
  19. ^ Kuhn, 1970, p. 157
  20. ^ Kuhn, 1970, p. 155
  21. ^ Trudeau, Richard J (1987). The non-Euclidean revolution. Boston: Birkhäuser. ISBN 978-0-8176-3311-0.
  22. ^ Kuhn, 1970, pp. 151 and passim
  23. ^ Kuhn, 1970, pp. 83–84, 151 and passim
  24. ^ Kuhn, 1970, p. 107
  25. ^ Gleick, James (1988). "Chapter 2:Revolution". Chaos:making a new science. New York: Viking Penguin. pp. 35–56. ISBN 0-670-81178-5.
  26. ^ Kuhn, Thomas N. (1972) [1970]. "Logic of Discovery or Psychology of Research". In Lakatos, Imre; Musgrave, Alan (eds.). Criticism and the Growth of Knowledge (second ed.). Cambridge: Cambridge University Press. p. 6. ISBN 978-0-521-09623-2.
  27. ^ James Clackson (2007). Indo European Linguistics: An Introduction. Cambridge University. p. 53. ISBN 9780521653671.
  28. ^ Schmidt, Sophie C.; Marwick, Ben (28 January 2020). "Tool-Driven Revolutions in Archaeological Science". Journal of Computer Applications in Archaeology. 3 (1): 18–32. doi:10.5334/jcaa.29.
  29. ^ Boris S. Kerner, Understanding Real Traffic: Paradigm Shift in Transportation Science, Springer, Berlin, Heidelberg, New York 2021. Archived from the original on 2021-06-02. Retrieved 2022-02-24.
  30. ^ Cristianini, Nello (2012). "On the Current Paradigm in Artificial Intelligence". AI Communications. 27: 37–43. doi:10.3233/AIC-130582.
  31. ^ Handa, M. L. (1986) "Peace Paradigm: Transcending Liberal and Marxian Paradigms". Paper presented in "International Symposium on Science, Technology and Development, New Delhi, India, March 20–25, 1987, Mimeographed at O.I.S.E., University of Toronto, Canada (1986)
  32. ^ Perez, Carlota (2009). "Technological revolutions and techno-economic paradigms", Cambridge Journal of Economics, Vol. 34, No.1, pp. 185–202
  33. ^ "Christopher H. (2009). "Global Warming and the Problem of Policy Innovation: Lessons from the Early Environmental Movement"".
  34. ^ See also Stewart Brand#NASA images of Earth
  35. ^ Kung, Hans & Tracy, David (ed). Paradigm Change in Theology. New York: Crossroad, 1989.
  36. ^ Küng, Hans. Theology for the Third Millennium: An Ecumenical View. New York: Anchor Books, 1990.
  37. ^ Robert Fulford, Globe and Mail (June 5, 1999). http://www.robertfulford.com/Paradigm.html Archived 2011-01-28 at the Wayback Machine Retrieved on 2008-04-25.
  38. ^ "Cnet.com's Top 10 Buzzwords". Archived from the original on 2009-10-04.
  39. ^ "The Complete Idiot's Guide to a Smart Vocabulary" pp. 142–43, author: Paul McFedries publisher: Alpha; 1st edition (May 7, 2001) Archived December 15, 2007, at the Wayback Machine ISBN 978-0-02-863997-0
  40. ^ Cohen, Martin (2015). Paradigm Shift: How Expert Opinions Keep Changing on Life, the Universe and Everything. Imprint Academic. p. 181.
  41. ^ "Martin Cohen". 6 September 2017.

Sources