Informatics Educational Institutions & Programs

Graf funkce sinus – sinusoida
Sinus v pravoúhlém trojúhelníku

Sinus je goniometrická funkce nějakého úhlu. Zapisuje se jako sin θ, kde θ je velikost úhlu. Pro ostré úhly je definována v pravoúhlém trojúhelníku jako poměr protilehlé odvěsny a přepony (nejdelší strany). Definici lze konzistentně rozšířit jak na všechna reálná čísla, tak i do oboru komplexních čísel.

Grafem funkce sinus v reálném oboru je sinusoida.

Sinus na jednotkové kružnici

Sinus α na jednotkové kružnici
Animace zobrazuje funkci sinus (červeně) vykreslenou ze souřadnice y (červený bod) a k tomu náležící bod na jednotkové kružnici (zelený bod) pod úhlem θ.

Sinus se jednoduše definuje na jednotkové kružnici (kružnici se středem v počátku a s poloměrem 1): Je-li α úhel, který svírá rameno s kladnou poloosou x (orientovaný od kladné poloosy x proti směru hodinových ručiček), je sin α roven y-ové souřadnici průsečíku této kružnice s koncovým ramenem úhlu α, jinak řečeno, rovná se délce kolmice spuštěné z tohoto bodu na osu x. Délce úsečky z počátku k patě této kolmice, přesněji (s ohledem na znaménko) x-ové souřadnici průsečíku jednotkové kružnice s koncovým ramenem úhlu α, je pak roven cos α. Poloměr, kolmice a tato úsečka tvoří pravoúhlý trojúhelník, pro nějž platí Pythagorova věta, takže také platí:

.

Na jednotkové kružnici je také vidět, že sinus je v prvním a druhém kvadrantu nezáporný (≥ 0), kdežto ve třetím a čtvrtém nekladný (≤ 0). V prvním a čtvrtém kvadrantu je rostoucí, ve druhém a třetím klesající.

Protože zřejmě platí, že

(resp. )),

kde je libovolné celé číslo, lze funkci sinus rozšířit i na záporné úhly a konzistentně definovat jako funkci na celé množině reálných čísel. Sinusoida pak zhruba (při nekonečně dlouhé ojnici) popisuje například pohyb pístu ve válci spalovacího motoru.

Sinus v reálném oboru

Reálná funkce reálné proměnné má následující vlastnosti (kde je libovolné celé číslo):

Sinus a kvadranty

Čtyři kvadranty kartézské soustavy souřadnic. Po jednotkové kružnici (obrázek vlevo) se pohybujeme proti směru hodinových ručiček a začínáme napravo (přechod žluté a hnědé barvy).

Pohybujeme se v kartézské soustavě souřadnic se čtyřmi kvadranty. Níže uvedená tabulka zobrazuje několik klíčových vlastností sinusové funkce dle konkrétního kvadrantu. Pro argumenty mimo tabulku lze vypočítat odpovídající informace pomocí periodicity funkce sinus.

Kvadranty Stupně Radiány Hodnota Hodnota sinu +/−
I. 0° < x < 90° 0 < x < π/2 0 < sin(x) < 1 +
II. 90° < x < 180° π/2 < x < π 0 < sin(x) < 1 +
III. 180° < x < 270° π < x < 3π/2 −1 < sin(x) < 0
IV. 270° < x < 360° 3π/2 < x < 2π −1 < sin(x) < 0

Následující tabulka uvádí základní hodnoty na hranicích kvadrantů:

Stupně Radiány sin (x)
0 0
90° π/2 1
180° π 0
270° 3π/2 −1
Úhly jsou udávány ve stupních a radiánech spolu s odpovídajícím průsečíkem na jednotkové kružnici (cos (θ), sin (θ)).

Hodnoty sinus na jednotkové kružnici

Tabulka pro orientaci v jednotkové kružnici ve stupních a radiánech:

x (úhel)
Stupně Radiány Otočení v kružnici
0 0
180° π 1/2
15° π/12 1/24
165° 11π/12 11/24
30° π/6 1/12
150° 5π/6 5/12
45° π/4 1/8
135° 3π/4 3/8
60° π/3 1/6
120° 2π/3 1/3
75° 5π/12 5/24
105° 7π/12 7/24
90° π/2 1/4

Tabulka hodnot po 90° v jednotkové kružnici:

x ve stupních 90° 180° 270° 360°
x v radiánech 0 π/2 π 3π/2
x po 1/4 kružnice 0 1/4 1/2 3/4 1
hodnota sin x 0 1 0 −1 0

Výpočty hodnot

sin(x) a Taylorovy aproximace, polynomy stupně 1, 3, 5, 7, 9, 11 a 13.

Sinus, stejně jako ostatní goniometrické funkce, patří mezi tzv. transcendentální funkce, jejichž hodnoty nelze přímo vypočítat pomocí elementárních operací. Pro výpočty s goniometrickými funkcemi se používají počítače a vědecké kalkulátory, takže jejich hodnoty většinou není třeba počítat. Pro ruční výpočet se používaly tabulky, kde byly tyto hodnoty už vypočteny pro určité hodnoty úhlů, a pro mezilehlé hodnoty se používala interpolace. Pro výpočty například při tvorbě takových tabulek se používají nekonečné řady. V počítačích a kalkulátorech se hodnoty goniometrických funkcí obvykle aproximují pomocí snáze vypočítatelných hodnot obvykle Čebyševových polynomů nebo nekonečných řad (Taylorova řada)

Hodnoty goniometrických funkcí lze však přesně určit pro všechny násobky 60° a 45°, a to následujícím způsobem:

Mějme rovnoramenný pravoúhlý trojúhelník s délkami odvěsen a=b=1; úhly při přeponě jsou stejné a tedy rovné (45°). Pak podle Pythagorovy věty:

a tedy ovšem

Goniometrické funkce úhlů radiánů (60°) a radiánů (30°) se určí pomocí rovnostranného trojúhelníka se stranami délky 1. Všechny jeho úhly jsou rovny radiánů (60°). Když ho rozdělíme na poloviny, získáme pravoúhlý trojúhelník s úhly o velikostech a . Jeho kratší odvěsna má délku , delší a přepona délku 1. Pak tedy:

Sinus v komplexním oboru

Funkce sinus je v komplexních číslech definována součtem řady

která konverguje na celé komplexní rovině. Pro každá komplexní čísla , a platí:

Tyto vzorce plynou přímo z příslušných definičních mocninných řad daných funkcí. Sinus je na celé komplexní rovině jednoznačná holomorfní funkce.

Odkazy

Související články

Externí odkazy