FAIR and interactive data graphics from a scientific knowledge graph

Kái liân-kiat
chhian-liân-kí: 2 chhian-liân-kí
sè-kí: 19 sè-kí | 20 sè-kí | 21 sè-kí
cha̍p-nî-kí: 1870 nî-tāi | 1880 nî-tāi | 1890 nî-tāi | 1900 nî-tāi | 1910 nî-tāi | 1920 nî-tāi | 1930 nî-tāi
: 1901 nî | 1902 nî | 1903 nî | 1904 nî | 1905 nî | 1906 nî | 1907 nî | 1908 nî | 1909 nî | 1910 nî | 1911 nî
1906 nî tī kî-thaⁿ le̍k-hoat
Kan-chi It-sū
kàu
Péng-ngó͘
Gregorius le̍k 1906 nî
MCMVI
Julius le̍k pí Gregorius le̍k chá 13 kang
Hu̍t-le̍k 2450 nî
Tō-kàu-le̍k 4603 nî
Hoê-le̍k 1324~1325
Ji̍t-pún Bêng-tī (明治) 39 nî
Hông-kì 2566 nî
Tân-kì 4239 nî
Hi-pek-lâi-le̍k 5666~5667
Se-chōng-le̍k im bo̍k choâ (shing mo sbrul)
kàu
iông hoé bé (me pho rta)
Hindu le̍k
- Vikram Samvat 1961 – 1962
- Shaka Samvat 1828 – 1829
Iran le̍k 1284 – 1285
Runic le̍k 2156
Assyria le̍k 6656 nî
Ethiopia le̍k 1900~1901
Pò͘-tek-le̍k 47 nî

1906 nî Gregorius Le̍k-hoat lāi-bīn sī chi̍t ê pêng-nî, thâu kang sī pài-it; tī Julius Le̍k-hoat lāi-bīn sī chi̍t ê pêng-nî, thâu kang sī lé-pài-ji̍t. Chia nî tī Gregorius Le̍k-hoat lāi-bīn pí Julius Le̍k-hoat chá 13 kang. Pō͘-hūn kok-ka tī 1923 nî í-chêng iáu ēng Julius Le̍k-hoat.

Liân-hō

Tang A-chiu kun-chú kì-goân

Sū-kiāⁿ

Bô ji̍t-kî

Kok-ka léng-tō-chiá

Siông-sè chhiáⁿ khoàⁿ: 1906 nî kok-ka léng-tō-chiá lia̍t-toaⁿ

Chhut-sì

Bô ji̍t-kî

Kòe-sin

Ji̍t-chì

1906 nî
(Gregorius Le̍k-hoat)
1 goe̍h 2 goe̍h 3 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28
LP P1 P2 P3 P4 P5 P6
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
4 goe̍h 5 goe̍h 6 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
LP P1 P2 P3 P4 P5 P6
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
7 goe̍h 8 goe̍h 9 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
LP P1 P2 P3 P4 P5 P6
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
10 goe̍h 11 goe̍h 12 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
LP P1 P2 P3 P4 P5 P6
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Chham-khó chu-liāu