FAIR and interactive data graphics from a scientific knowledge graph

Skriveni Markovljev model (HMM) je statistički Markovljev model u kome se podrazumeva da je modelovani sistem Markovljev proces sa neopaženim (skrivenim) stanjima. HMM se može smatrati najjednostavnijom dinamičkom Bajesovom mrežom. Matematičku zaleđinu HMM-a je razvio L. E. Baum sa saradnicima.[1][2][3][4][5] HMM je blisko srodan sa ranijim radom na optimalnom nelinearnom problemu filtriranja koji je objavio Ruslan L. Stratonović,[6] i pri tom prvi opisao dvosmernu proceduru.

U regularnom Markovljevom modelu, stanje je direktno vidljivo za posmatrača, i stoga su verovatnoće tranzicije stanja samo parameteri. U skrivenom Markovljevom modelu, stanja nisu direktno vidna, ali je učinak, koji je zavistan od stanja, vidan. Svako stanje ima verovatnoću distribucije preko mogućih izlaznih tokena. Stoga sekvenca tokena koje HMM generiše daje izvesnu informaciju o sekvenci stanja. Atribut 'skriven' se odnosi na sekvencu stanja kroz koja model prolazi, a ne na parametre modela. Čak i ako su parametri modela precizno poznati, model je još uvek 'skriven'.

Skriveni Markovljevi modeli su posebno poznati po njihovoj primeni u temporalnim obrascima prepoznavanja kao što je govor, rukopis, gestikulacija,[7] čitanje partiture,[8] parcijalna pražnjenja[9] i bioinformatika.

Skriveni Markovljev model se može smatrati generalizacijom modela smeše gde su skrivene promenljive (ili latentne promenljive), koje kontrolišu komponente smeše da se izaberu za svaku opservaciju, povezane putem Markovljevog procesa umesto da su međusobno nezavisne.

Opis

Slika 1. Probabilistički parameteri u skrivenom Markovljevom modelu (primer)
x – stanja
y – moguće opservacije
a – verovatnoće tranzicije stanja
b – izlazne verovatnoće

U njegovoj diskretnoj formi, skriveni Markovljev proces se može prikazati kao generalizacija problema urni[10]: Duh je u sobi koja nije vidljiva za posmatrača. U toj skrivenoj sobi postoje urne X1, X2, X3, ... svaka od kojih sadrži poznatu smešu kugli, svaka kugla je obeležena sa y1, y2, y3, ... . Duh bira urnu i nasumice bira kuglu iz nje. On je zatim stavi na pokretnu traku, gde posmatrač može da vidi sekvencu kugli, ali ne i sekvencu urni iz kojih su izabrane. Duh ima neku proceduru da izabere urne; izvor urne za n-tu kuglu zavisi samo od randomnog broja i izvora urne za (n − 1)-tu kuglu. Izbor urne nije direktno zavistan od urni izabranih pre jedne prethodne urne; stoga se to naziva Markovljevim procesom. On se može opisati gornjim delom Slike 1.

Sam Markovljev proces se ne može videti, jedino je sekvenca kugli vidna, tako da se ovaj aranžman naziva skrivenom Markoljevim procesom. To je ilustrovano donjim delom dijagrama na Slici 1, gde se može videti da kugle y1, y2, y3, y4 mogu da budi izvučene u svakom stanju. Čak i ako posmatrač zna sadržaj urni i treba da posmatra samo sekvencu od tri kugle, e.g. y1, y2 i y3 na pokretnoj traci, posmatrač još uvek ne može da bude siguran iz koje urne (i.e., iz kojeg stanja) je duh izabrao za treću kuglu. Međutim, posmatrač može da odredi druge detalje, kao što je identitet urne iz koje je duh najverovatnije izabrao treću kuglu.

Reference

  1. Baum, L. E.; Petrie, T. (1966). „Statistical Inference for Probabilistic Functions of Finite State Markov Chains”. The Annals of Mathematical Statistics 37 (6): 1554–1563. DOI:10.1214/aoms/1177699147. Pristupljeno 28 November 2011. 
  2. Baum, L. E.; Eagon, J. A. (1967). „An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology”. Bulletin of the American Mathematical Society 73 (3): 360. DOI:10.1090/S0002-9904-1967-11751-8. 
  3. Baum, L. E.; Sell, G. R. (1968). „Growth transformations for functions on manifolds”. Pacific Journal of Mathematics 27 (2): 211–227. 
  4. Baum, L. E.; Petrie, T.; Soules, G.; Weiss, N. (1970). „A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains”. The Annals of Mathematical Statistics 41: 164. DOI:10.1214/aoms/1177697196. 
  5. Baum, L.E. (1972). „An Inequality and Associated Maximization Technique in Statistical Estimation of Probabilistic Functions of a Markov Process”. Inequalities 3: 1–8. 
  6. Stratonovich, R.L. (1960). „Conditional Markov Processes”. Theory of Probability and its Applications 5: 156–178. 
  7. Thad Starner, Alex Pentland. Real-Time American Sign Language Visual Recognition From Video Using Hidden Markov Models. Master's Thesis, MIT, Feb 1995, Program in Media Arts
  8. B. Pardo and W. Birmingham. Modeling Form for On-line Following of Musical Performances Arhivirano 2012-02-06 na Wayback Machine-u. AAAI-05 Proc., July 2005.
  9. Satish L, Gururaj BI (April 2003). "Use of hidden Markov models for partial discharge pattern classification". IEEE Transactions on Dielectrics and Electrical Insulation.
  10. Rabiner, Lawrence R. (February 1989). „A tutorial on Hidden Markov Models and selected applications in speech recognition”. Proceedings of the IEEE 77 (2): 257–286. DOI:10.1109/5.18626.  [1]

Vanjske veze

Koncepti

Softver