Die Coulomb-Eichung (nach ihrem Zusammenhang mit dem Coulomb-Potential (s. u.); auch Strahlungseichung oder transversale Eichung genannt) ist eine mögliche Eichung der Elektrodynamik, beschreibt also eine Einschränkung der elektrodynamischen Potentiale.

Eichfreiheit der Elektrodynamik

Um die Lösung der Maxwell-Gleichungen zu erleichtern, führt man für das elektrische Feld und das magnetische Feld , das elektrische Skalarpotential und das magnetische Vektorpotential ein, welche die klassisch beobachtbaren Felder beschreiben:

.

Diese Definition erlaubt Eichfreiheiten in der Wahl von Skalar- und Vektorpotential, die keine Auswirkungen auf messbare Größen haben, insbesondere nicht auf elektrisches Feld und magnetische Flussdichte.

Die Coulomb-Eichung

Diese Eichfreiheit wird in der Coulomb-Eichung dazu genutzt, die Divergenzfreiheit des Vektorpotentials zu fordern:

Wegen und folgen daraus die im nächsten Paragraphen notierten Resultate.

Die inhomogenen Maxwell-Gleichungen in der Coulomb-Eichung

Setzt man mit dieser Eichung die Potentiale in die inhomogenen Maxwell-Gleichungen (das gaußsche Gesetz und das erweiterte Induktionsgesetz) ein, so erhält man

und

.

Der Quellterm wird der transversale Strom genannt, weil nach Konstruktion gilt. Diese Bedingung ist notwendig, damit die partielle Differentialgleichung durch Vektorpotentiale gelöst werden kann, die die Coulomb-Eichung erfüllen.

Die Lösung der ersten Gleichung ist das skalare Potential

,

dieses ist also in dieser Eichung identisch mit dem Coulomb-Potential.

Die zweite Gleichung ist eine inhomogene Wellengleichung mit der durch die Methode des retardierten Potentials gewonnenen Lösung:

.

Dabei ist die retardierte Zeit gegeben durch  . Physikalisch entspricht die zuletzt angegebene Differenz der Zeitspanne, die ein Licht- oder Radarsignal braucht, um die Strecke vom Ausgangspunkt (dem Integrationpunkt) der Signale zum Ankunftspunkt zu durchlaufen (c ist die Lichtgeschwindigkeit).

Der Vor- oder Nachteil der Coulomb-Eichung besteht in den zwei unterschiedlichen Zeiten in den Integralen. Das skalare Potential hängt von der instantanen Ladungsverteilung (Zeitpunkt t) ab, während für das Vektorpotential der retardierte Strom (Zeitpunkt t' < t) relevant ist. Die konkurrierende Lorenz-Eichung hat diesen Nachteil nicht, sondern berücksichtigt Retardierung durchgehend. Damit ist sie auch explizit relativistisch invariant.

Sind keine Quellen (Ladungen und Ströme) vorhanden, so vereinfachen sich die Gleichungen zu

und

,

das Vektorpotential erfĂĽllt also die homogene Wellengleichung.

Literatur

  • John D. Jackson: Klassische Elektrodynamik. Walter de Gruyter Berlin New York, 2006, ISBN 978-3-11-018970-4.