Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

Bobina de Tesla em Questacon, na Austrália, no National Science and Technology Centre museum.

A bobina de Tesla é um transformador ressonante capaz de gerar uma tensão altíssima com grande simplicidade de construção, inventado por Nikola Tesla por volta de 1890.[1]

Descrição

Na forma mais usual, é formada por um transformador com núcleo de ar, com um capacitor primário carregado a uma tensão de alguns (5-30) kV se descarregando sobre a bobina primária através de um centelhador.[1] A bobina primária possui poucas espiras de fio grosso (1-20), podendo ser cilíndrica, plana ou cônica, e é montada próxima à base da bobina secundária. O circuito secundário é formado por uma bobina secundária cilíndrica com por volta de mil espiras, montada centrada sobre a bobina primária, que ressona com sua própria capacitância distribuída e com a capacitância de um terminal montado no topo da bobina. Estas capacitâncias distribuídas dependem apenas da geometria do sistema, e formam a capacitância secundária. A base da bobina secundária é ligada à terra, ou a um condutor com grande capacitância distribuída, que serve como "contrapeso". Os circuitos primário e secundário são ajustados para ressonar na mesma frequência, usualmente na faixa de 50 a 500 kHz. O sistema opera de forma similar a dois pêndulos acoplados com massas diferentes, onde as oscilações a baixa tensão e alta corrente no circuito primário são gradualmente transferidas para o circuito secundário, onde aparecem como oscilações com baixa corrente e alta tensão. Quando se esgota a energia no circuito primário, o centelhador deixa de conduzir, e a energia fica oscilando no circuito secundário apenas, alimentando faíscas e corona de alta frequência.[carece de fontessource: https://pt.wikipedia.org/wiki/Bobina_de_Tesla]

Uma bobina de Tesla caseira.

A alta tensão em alta frequência no secundário pode gerar um campo elétrico alto o suficiente para ionizar o ar (30 kV/cm), e uma vez que a ionização se inicie, ela se propaga na forma de faíscas elétricas (se existir algum condutor próximo) ou corona.[2] A energia disponível é o fator mais importante, e ela depende da capacitância do terminal. A energia que fica armazenada na capacitância distribuída da bobina secundária não é disponível imediatamente, e pouco contribui para os “streamers”.[2]

Desempenho

Bobinas de Tesla alcançam 250 kV com relativa facilidade, e algumas chegam a 1,5 MV ou mais.[carece de fontes?]

Usos

Bobinas de Tesla já foram usadas em transmissores de rádio primitivos, dispositivos de eletroterapia e geradores de alta tensão para aplicações em física de altas energias. A aplicação mais comum atualmente é para demonstrações sobre eletricidade em alta tensão, gerando faíscas elétricas que podem ter vários metros de comprimento.[carece de fontes?]

Física do mecanismo

Sendo L1, C1 a indutância e a capacitância do circuito primário e L2, C2 o mesmo do circuito secundário, a máxima tensão de saída (ignorando perdas) pode ser obtida, pela conservação da energia, como:

Vsaida = Vinicial √(C1/C2) = Vinicial √(L2/L1)

A sintonia na mesma frequência implica L1C1 = L2C2.

O coeficiente de acoplamento entre as bobinas primária e secundária tem valores ideais, ignorando perdas, que são da forma k = (b2-a2)/(b2+a2), onde a e b são inteiros com diferença ímpar, como a:b = 1:2, 2:3, 5:8, etc., que definem o modo de operação. Esses valores resultam em transferência completa de energia em b semiciclos de oscilação. Isto é crítico apenas em bobinas construídas para transferência rápida de energia, como no modo 1:2, que resulta em k = 0.6 e transferência em um ciclo. Em bobinas feitas para demonstrações, coeficientes de acoplamento por volta de 0,1 são o usual, modo 9:10, com transferência em cinco ciclos.

Uma representação da Bobina de Tesla é representada abaixo:

Ilustração de uma Bobina de Tesla

Esquema elétrico

O esquema elétrico de uma bobina de Tesla é bastante simples e funciona da seguinte forma: a tensão de alimentação é elevada de 110 ou 220 V para algo em torno de 6 a 10 kV. O circuito ressonante formado por L1 e C1 eleva ainda mais essa tensão, sendo capaz de gerar uma tensão de faiscamento em Sg1. O princípio do faiscamento é importante pois sendo ele um impulso de energia, ele é rico em altas frequências, capazes de sintonizar as altas frequências da bobina de Tesla em T2 que nada mais é que outro transformador elevador de tensão atrelado a um circuito ressonante imaginário, formado pelas capacitâncias parasitas de T2 e pela capacitância própria esfera de irradiação em Term1. O ajuste fino da frequência de ressonância é feito através de um tap na bobina primária do transformador T2.

Esquema Elétrico de uma Bobina de Tesla

No exemplo acima:

  • Sw1 = interruptor simples;
  • R1 = 33 k;
  • Ne1 = Lâmpada de Neon;
  • T1 = Transformador de 6 kV, utilizado para iluminação de fachadas Neon;
  • L1 = Indutor de 2,5 mH de alta tensão e alta frequência;
  • C1 = Capacitor de alta tensão, formado por lâminas de metal isoladas por placas de vidro;
  • Sg1 = Faiscador ajustável;
  • T2 = Bobina de Tesla;
  • Term1 = Esfera de Irradiação de Alta Tensão.

Referências

  1. a b "Bobina de Tesla" por Luiz Ferraz Netto (Acesso em 07 de abril de 2013)
  2. a b MOREIRÃO DE QUEIROZ, Antonio Carlos (28 de Fevereiro de 2003). «A Classical Tesla Coil with Top Load Tuning». ufrj. Consultado em 22 de Setembro de 2014 

Ligações externas