Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Okrąg jednostkowy – wieloznaczne pojęcie matematyczne:
Ostatni z tych zbiorów jest grupą ze względu na mnożenie, nazywaną grupą okręgu[4].
Często oznacza się go symbolem a jego uogólnieniem na wyższe wymiary jest sfera jednostkowa. Do zdefiniowania innych „okręgów jednostkowych”, np. okręgu Riemanna, można skorzystać z innych pojęć „odległości” (zob. przestrzeń unormowana).
Jeżeli jest punktem okręgu jednostkowego leżącym w pierwszej ćwiartce, to i są długościami przyprostokątnych trójkąta prostokątnego o przeciwprostokątnej długości 1. Z twierdzenia Pitagorasa oraz spełniają równanie:
Ponieważ dla każdego a odbicie dowolnego punktu leżącego na okręgu jednostkowych względem osi rzędnych bądź odciętych nadal leży na tym okręgu, to powyższe równanie jest spełnione dla wszystkich punktów leżących na okręgu jednostkowym, a nie tylko tych z pierwszej ćwiartki.
Okrąg jednostkowy można zadać wielorako. Korzystając z własności liczb zespolonych uzyskuje się charakteryzację:
Na okręgu jednostkowym można zdefiniować funkcje trygonometryczne sinusa i cosinusa: jeżeli jest punktem okręgu jednostkowego, a promień o początku w i końcu w tworzy kąt z dodatnią półosią (przy czym mierzy się go przeciwnie do ruchu wskazówek zegara zaczynając od osi), to:
Równanie daje wtedy zależność:
(Zapis jest zwyczajową formą zapisu potęg dla wszystkich funkcji trygonometrycznych).
Okrąg jednostkowy daje intuicyjny wgląd w okresowość wspomnianych funkcji:
dla dowolnej liczby całkowitej
Wyżej wymienione tożsamości można podsumować następująco: współrzędne punktu na okręgu jednostkowym nie ulegają zmianie przy zwiększeniu bądź zmniejszeniu kąta o dowolną liczbę obrotów (1 obrót = 2п radianów = 360°).
Definiowane z elementów trójkąta prostokątnego sinus, cosinus oraz inne funkcje trygonometryczne są określone tylko dla miar kątów większych od i mniejszych od Zdefiniowane za pomocą okręgu jednostkowego mają one swoje sensowne, intuicyjne uogólnienia dla dowolnej rzeczywistej miary kąta, co pokazano na rysunku obok.
Zbiór Julii dyskretnego nieliniowego układu dynamicznego z funkcją ewolucji:
jest okręgiem jednostkowym. Jest to najprostszy przypadek i z tego powodu jest on szeroko stosowany w badaniach nad układami dynamicznymi.