Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

Gausa teorēma elektriskajam laukam: ja lādiņu sistēmu (kopu) aptver iedomāta, patvaļīga, slēgta, viensakarīga virsma , tad elektriskā lauka intensitātes plūsma caur šo virsmu ir proporcionāla pilnajam elektriskajam lādiņam virsmas ierobežotajā tilpumā.

Nosaukums

Teorēmas nosaukums nenozīmē, ka tā ir kādas žiperīgas teorēmas pretstats. Tā nodēvēta Kārļa Gausa vārdā, kurš to atklāja[1] 40 gadus pēc tam, kad to 1773. gadā atklāja Lagranžs,[2] kurš tiek uzskatīts par pirmo teorēmas atklājēju.[3]

Skalārā forma

kur
- elektriskā lauka intensitātes plūsma (C×m/F vai V*m)
- lādiņš, kurš rada elektrisko lauku (C)
8,85×10-12 F/m - elektriskā konstante

Gausa teorēmu viegli pārbaudīt punktveida lādiņa laukam, ja lādiņu aptver ar sfēriski simetrisku virsmu. Elektriskā lauka intensitāte visos sfēras virsmas punktos ir konstanta un vektors vērsts perpendikulāri virsmai. Tādēļ intensitātes plūsma caur sfēras virsmu ir šāda:

kur
- sfēras virsmas laukums m2

Tā kā

un

tad

Vektoriālā forma

kur
- elektriskā lauka intensitātes plūsma (C×m/F vai V*m)
- elektriskā lauka intensitāte (N/C)
- virsmas vektors (m2)
- lādiņš, kurš rada elektrisko lauku (C)
8,85×10-12 F/m - elektriskā konstante

Gausa teorēmas pierādījums

Savukārt

kur - virsmas normāle.

Tādēļ lauka elementārplūsma caur virsmas elementu ir

- virsmas elementa projekcija uz sfēras virsmu, kuras rādiuss ir
- leņķis starp intensitātes vektoru un normāles vektoru

Līdz ar to formula

pārvēršas šādi:

var izteikt vēl ar telpas leņķa elementu, tas ir:

- telpas leņķa elements

Līdz ar to var iegūt, ka

Lai iegūtu punktveida lādiņa elektriskā lauka intensitātes plūsmu, šī izteiksme ir jāintegrē caur virsmu , tas ir:

sr

Gausa teorēmas secinājumi

  • Plūsma nav atkarīga no virsmas izvēles.[4]
  • Ja virsmas ierobežotajā tilpumā atrodas patvaļīga lādiņu kopa, tad, piemērojot Gausa teorēmu katram lādiņam , pēc superpozīcijas principa iegūstam integrālo teorēmu , kurā

Atsauces

  1. Carl Friedrich Gauss. Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo nova tractata (Latin). (Gauss, Werke, vol. V, p. 1).
  2. Lagrange, Joseph-Louis (1773). "Sur l'attraction des sphéroïdes elliptiques" (French). Mémoires de l'Académie de Berlin: 125.
  3. Pierre Duhem. Leçons sur l'électricité et le magnétisme (French). vol. 1, ch. 4, p. 22–23. shows that Lagrange has priority over Gauss. Others after Gauss discovered "Gauss' Law", too.
  4. V. Fļorovs, I. Kolangs, P. Puķītis, E. Šilters, E. Vainovskis. Fizikas rokasgrāmata. Zvaigzne, 1985. 162. lpp.