Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
NTSCは、コンポジット映像信号および、それを用いたテレビジョン放送方式の仕様および標準規格「RS-170 (A)」「SMPTE-170M」などの通称。
NTSCとは規格を策定したNational Television System Committee(全米テレビジョンシステム委員会)の略。特に1953年に定められたカラーテレビ放送規格を指す。開発国のアメリカ合衆国などとともに、日本のアナログテレビ放送システムが採用していた規格である。
前述の正式名称(規格票)は専門書等以外ではほとんどみられない。
1927年、フィロ・ファーンズワースが、サンフランシスコで全電子式テレビジョンの公開実験を行った。その後1933年、アイコノスコープが開発され、さらに感度を向上させてスタジオ撮影も可能とした1938年のオルシコン開発といった、改良された各種撮像管の開発などの要素技術の発展を受けて、1930年代末頃には研究室内での実験段階をクリアして、商業放送が可能な水準へと到達した。しかしその時点において、各社各様のさまざまな仕様が乱立する気配を見せはじめていた。
そこで1940年、Radio Manufacturers Association(RMA、後のElectronic Industries Alliance(EIA))によって、National Television System Committee(NTSC)が組織された。
NTSCによる仕様の策定には9か月ほどを費やし、幾度となく会合が開かれ、実験も行われた。その成果は、1941年3月に推奨規格としてFederal Communications Commission(FCC)へと提出され、同5月に商業放送が承認された。1957年、この白黒テレビ方式の標準は、EIAによって、RS-170として編纂されまとめられた。
1940年代末から1950年代初頭にかけて、カラー放送開始に向けての機運が高まった際にも同様の仕様の乱立の気配ないしその危惧から、NTSCが再招集された。その結果1953年に、RCA社が基本原理を開発したカラー方式への拡張(と、わずかな変更)を標準として採択し、その後は規格の厳格化と定義の厳密化を経て、その主要な役割を最後まで全うしつつある今日に至っている。
ここでは、1953年にFCCによって商業放送が承認されたカラーテレビジョン放送全米標準方式(1977年に暫定規格 EIA RS-170Aとしてまとめられ、さらに1994年、SMPTE-170Mとして厳格化)について主に記す。
1940年代から放送が行われていた白黒テレビジョンとの後方互換性を維持しつつ、明るさではなく光の三原色(赤・緑・青)の動画信号を伝送・表示するために、1950年代の市販家電製品に採用可能な様々な技術が投入されている。輝度の変化に関しては小さく細かい変化まで判別できるが画像の中で色彩だけが変化している部分は網膜に映る面積がある程度以上広くないと変化の存在自体を認識できない人間視覚の特性を利用して、そのまま送信すると白黒放送の3倍の電波帯域幅が必要になるカラー映像信号を1/3の帯域に圧縮している。
明るさを表す輝度信号と色の座標を示す2つの色度信号に撮像素子から出力された三原色の強さを表す信号をマトリクス変換し輝度信号には白黒放送との互換性を持たせ、色差信号はローパスフィルターにより大幅な帯域制限を行って色副搬送波(カラーサブキャリア)で直交振幅変調をかけてクロマ信号とし、輝度信号や音声信号との相互妨害を極力発生させないような形態に合成して放送する。
各家庭の受像機では、視聴するチャンネルの放送周波数帯を選択増幅し、検波器でベースバンド映像信号に復調したものから輝度信号と色差信号を分離し逆マトリクス変換によって三原色の強さを表す信号を復元し、カラーブラウン管(今日では液晶やプラズマディスプレイを始めとする平面表示デバイス)に動画像を表示する。
NTSC委員会の策定したカラーテレビジョン放送方式を採用している国はアメリカ、カナダ、メキシコ、日本、台湾、韓国、フィリピン、中南米諸国の一部、太平洋諸島の一部などである。採用国数と視聴可能人口ではインドと中国も採用しているPAL方式の陣営が圧倒的に上回るが、アメリカが映像ソフトの供給大国であることから市場における各方式の地位・重要性は単純に比較出来ない。
白黒テレビとの後方互換性を維持するため、以下の基本諸元を引き継いでいる。
前節で述べた白黒放送の諸元に対し、カラー放送では色差情報(クロマ信号)を付加する為の色副搬送波(周波数 fsc で示す)を追加した他、水平同期周波数 fh と映像 - 音声搬送波周波数の差 fa が整数倍の関係になるよう変更している。
水平同期周波数 fh を変更した理由は、NTSCの輝度信号のスペクトルのピークが fh 間隔で存在し、輝度信号スペクトルと音声信号スペクトルの谷間に色副搬送波スペクトル(こちらもピークが fh 間隔で存在する)のピークが来るようインターリーブさせることで相互妨害が最小で済むような形で合成するためである[2]。当時のテレビ受像機は音声再生にインターキャリア方式を使っていたため、fa を変更すると音声再生に支障が発生することから fh の値を変更した。これに伴って垂直同期周波数は60HzからHzに、フレームレートも毎秒30枚から枚へと0.1%ずつ低下するが、大部分がアナログ回路で構成されている垂直および水平偏向系にとっては製造誤差を見込んだ引き込み範囲内に収まる変更であり、既存の白黒テレビジョン受像機を改造調整することなくカラー放送の輝度信号部分を受信可能にしている。また、NTSC方式カラーテレビジョン受像機においても従来の白黒放送を受信可能としている。
色差信号を解読しない白黒テレビ受像機では輝度信号に加算されたクロマ信号は単なる妨害信号(ノイズ)となり、非常に細かい波状の明暗ビートとして画面に表示される。色副搬送波の周波数を水平同期周波数のの奇数倍、映像信号帯域上限(約4.2MHz)に近い数値にしたのはこの妨害ビートが出来るだけ細かくなるよう、さらに市松模様状に規則正しく並んで適正視聴距離[注釈 2] 以遠まで離れて見ると模様が潰れて平均化されて目立たなくなるように考慮して設定された値であり、映像信号帯域の4.2MHzからクロマ信号側帯波の帯域を0.5MHz以上確保した3.579545MHzに定められている。家庭用テレビに接続可能な、ゲーム機、パソコンなどではこの周波数がシステム全体のクロックとして流用され、MSXや、SEGAのゲーム機など、CPUの規定周波数とは異なる、3.579545MHzで動作する機種が多く生まれた。(ゲーム機やMSXなどは、厳密にはNTSCとは規格が異なる映像信号を出力する)
被写体で反射しビデオカメラのレンズに入射してきた光はダイクロイックプリズムまたはカラーフィルタによって赤・緑・青の各波長毎の像に分解され、レンズの焦点距離にある撮像面の撮像素子(かつては撮像管、近年は固体撮像素子)に像を結ぶ。撮像面上に投影された像は、撮像素子の光電効果もしくは微小フォトダイオードによって光の強弱を2次元平面上の電位の高低や抵抗値の高低へと変換され、水平および垂直走査によって走査線毎に分解された線順次(1次元の)電位信号として取り出されてくる。
輝度信号Yと色度信号I・Qはこの赤緑青各色のカメラから出力される色信号にガンマ補正を施し、重み付けを行って加算する事で生成する。ブラウン管などの表示装置に使用される三原色のISO/CIE 10527 色度図座標を
と想定し、無色の「白」を意味する信号を送出した時に受像機側で表示される光をCIE標準の光Cの座標
に設定して、これらの色に合致させた各色カメラからの出力色信号 赤:R 緑:G 青:B を0 (0IRE) - 1 (100IRE) の範囲に正規化したとき、
の様にガンマ補正を行い、7.5IREのセットアップレベル(最低輝度の「黒」を規定する信号レベル)を加算
したものを
というマトリクスを実現する回路で変換を行う。受像機側では上記マトリクスの逆行列に相当する変換回路で輝度信号Yと色度信号I・Qから赤緑青の各色信号を復元し、表示装置を駆動する。
ただし上記三原色の色度図座標で発光する蛍光体は輝度が非常に低い物しか存在せず、現実のブラウン管では別の色で発光する蛍光体で代用し、色再現の差異は受像機側マトリクスの係数を変更して吸収している。
また、SMPTE-170Mでは「白」の座標は標準の光D65のx=0.3127 y=0.3290に変更され、三原色の座標もガンマ補正時の処理もセットアップレベルを加算する段階も1953年の規格制定当時の物とは内容が異なっている。詳細は当該規格参照。
オレンジから水色の色差を表すI信号は基準となる色副搬送波から57度遅れた位相を持つ搬送波で平衡変調し、青紫から黄緑の色差を表すQ信号は同じく147度遅れた(I信号から更に90度遅れた)搬送波で変調をかけて加算し、クロマ信号を生成する。クロマ信号は、簡単に言えば基準となる色副搬送波との位相差が色相を、振幅が彩度を表すベクトル信号である。受信側で色差信号の復調を行う際のよりどころとなる位相と振幅の基準信号は、水平同期パルス立ち上がり直後のブランキングレベル区間(バックポーチ)に挿入されている。このカラーバースト信号は、水平同期パルス立下り50%エッジ[注釈 3] から色副搬送波19サイクル(約5.3μ秒)後に始まる持続時間9±1サイクルの色副搬送波で構成され、振幅は垂直・水平同期信号と等しい40IRE p-pと規定されている。
受像機側での復調時にはカラーバースト信号と同じ位相同じ周波数に同期させた連続波発振器(多くの場合、水晶振動子が用いられる)を駆動し、各々57度と147度遅らせる移相器を通した2種類の局部発振信号を得て映像信号から分離したクロマ信号を同期検波してI・Q信号を復元する。
尚、EI色度信号は色副搬送波信号3.579545MHzを中心とした下側波帯が1.5MHz・上側波帯が0.5MHzの周波数占有帯域幅であるが、EQ色度信号は下側波帯が0.5MHz・上側波帯も0.5MHzとなっており占有帯域幅が異なる。このため回路内で帯域幅が広いEI色度信号はEQ色度信号よりも僅かに遅れてしまう。これを補正するためにI復調回路の出力信号はディレーライン(遅延線輪)を通して時間補正し、更にディレーライン通過時の利得損失を補うEI色度信号増幅回路を経てからアーダー(信号加算回路)に入れる必要がある。
I復調回路からは極性が互いに逆の+EI色度信号と-EI色度信号が、同様にQ復調回路からは+EQ色度信号と-EQ色度信号が出力される。これら4色度信号は赤緑青用の各アーダー(信号加算回路)で比率制御された上で輝度信号+EY信号と共に加えられ、赤緑青の各色信号を再現する。
1.00EY+0.96EI+0.63EQ=ER、1.00EY-0.28EI-0.64EQ=EG、1.00EY-1.11EI+1.72EQ=EBとなり色信号が再生される。
SMPTE-170Mでは色差信号としてとを合成しU信号は180度、V信号は90度遅れた色副搬送波で変調してクロマ信号を生成する方法を第一に挙げている。一方、I・Q信号でクロマ信号を生成する旧い1953年版規格の機器も継続使用が認められている。最終的に生成されるクロマ信号は両者の間に大きな違いは無いが、唯一Q信号の帯域制限を行うローパスフィルターの特性だけが0.5MHzで6dB減衰と狭くなっている(U・VおよびI信号は1.3MHzまで減衰量2dB以下、3.6MHzで20dB以上)。
そのため、受像機側では新旧どちらの規格で作られた映像信号が来ても問題ないように、色差信号復調前後のフィルター特性はQ信号のそれに合わせて狭帯域 (0 - 0.5MHz) で実装するのが安全であると考えられている。実際、音声搬送波がクロマ信号に与える妨害ビート約920kHzを回避するため同時にコストダウンの目的もあって市販受像機ではクロマ帯域のフィルターを狭帯域の物のみで済ませており、I信号を広帯域1.3MHzまで復調している例は稀有である。
I・Q復調方式によるカラーテレビ受像機は放送局から送信されてきた信号を全て利用し忠実な色を再現できるが、占有帯域幅が広いI信号を占有帯域幅が狭いQ信号の伝達速度に合わせるための遅延線輪(ディレーライン)及び、EI色度信号増幅回路が必要であると共に回路が複雑で高価になる。(1990年代に、三菱電機から「29C-CZ1」などCZシリーズとして「自然の色」を再現する機能を搭載したテレビが発売された。これがIC・トランジスタ化後、日本国内で販売された唯一のI・Q復調方式カラーテレビである。)
このため実際に市販された大半のカラーテレビでは色信号に関しては3.579545MHzを中心とした±0.5MHzのみを表示している。
真空管時代は、I・Q軸ではなくI軸寄りの位相のX軸、及びQ軸に近い位相のZ軸から成る2軸復調が主流であった。この方式は、X復調回路から出力されるEX信号をER-EY増幅管の第1グリッドに、Z復調回路から出力されるEZ信号をEB-EY増幅管の第1グリッドに送り出す。(EG-EY増幅管の第1グリッドはER-EY、EB-EY増幅管と同様にバイアス抵抗によりアースされているが、X復調回路、及びZ復調回路の出力とは繋がっては無く無入力となっている。)
尚、ER-EY、EG-EY、EB-EYの各色差信号増幅管のカソードは一点結合しており3管共有のカソード抵抗(この抵抗の両端に生じる電圧をEKとする。これは各色差信号増幅管のグリッドに対して-EKとして加わる。)
各色差信号増幅管の増幅率をAとすると。色差信号ER-EY出力管の出力電圧は、
-A(EX-EK)=ER-EY (真空管ではグリッドにはマイナス電圧で入力するが、プレートからはプラス電圧で出力されるため極性の逆転が起きる。このため色差信号増幅管の増幅率を「-A」とする。)同様に-A(EZ-EK)=EB-EY となる。
一方、色差信号EG-EY増幅管の第1グリッドにはEX、EZのいずれの信号も入らず共有カソード抵抗により生じた「-EK」のみが入力され、-A(-EK)=EG-EYとなる。(ここで、EKの位相はEG-EYの位相と一致する必要がある。そのため-EXと-EZの合成ベクトル位相がEG-EYの位相と一致する様にX軸及びZ軸は設定されている。)
これら各色差信号はカラーブラウン管の赤緑青の各色差信号用グリッドに加わる。一方カラーブラウン管のカソードには輝度信号の極性を±反転させた「-EY信号」が加わる。これはブラウン管の各三色各色差信号用グリッドに対しては更に極性逆転して+EY信号として加わる。
これによりカラーブラウン管内部において、(ER-EY)+EY=ER、(EG-EY)+EY=EG、(EB-EY)+EY=EBの赤緑青の各色信号が再現されこれに基づいて三色の電子ビームの強さを制御しカラー画面をブラウン管上に再現する。
尚、IC・トランジスタが普及するとX軸・Z軸復調方式から次第に直接、色差信号のER-EY、EB-EYを復調する「ER-EY・EB-EY 2軸復調方式」が主流となる。
この方式では色差信号EG-EYを復調しないがER-EY、EB-EYの各色差信号をEG-EY増幅トランジスタのベースに
-0.51(ER-EY)-0.19(EB-EY)=EG-EY として入力しコレクタ出力再現する。
更にER-EY、EG-EY、EB-EY全ての色差信号を直接復調する3軸復調方式もあるが、これはバランスが取りにくく不安定なため余り普及しなかった。
送出側で輝度信号Yとクロマ信号Cを合成する際は単純に加算するだけで済むが、受像機側でのY/C分離は現在に至るも完全な分離法は実現されていない。以下にいくつか方式を挙げるが、それぞれに利点・欠点を持つ。
クロマ信号の主成分が約3 - 4.2MHzを占めている事に着目し、それ以下 (0 - 3MHz) の周波数帯には輝度信号しか含まれていないと見なしてローパスフィルタで輝度信号Yを抽出し、3 - 4.2MHzの領域はクロマ信号Cのみであるとしてバンドパスフィルタで分離する。
上述した通り色副搬送波周波数は水平同期周波数の倍であり、言い換えれば1本の走査線は色副搬送波227.5サイクル分の時間で描かれるということである。走査線上のある1点に注目するとその直上や直下の走査線の同じ水平位置では色副搬送波は半サイクルずれ、位相が反転している。仮に1色で塗りつぶされている画像を撮影してNTSCの映像信号に変換したとき生成されるクロマ信号の振幅は一定になるが色副搬送波との位相差も一定になるので、当該画像のクロマ信号は直上直下の走査線と比較すると同じ水平位置では位相だけが反転していることになる。
自然画像を撮影し走査線で分解して映像信号にしたものを仔細に分析すると、直上直下の走査線ではあまり大きく内容が変わらず同じ水平位置では輝度・彩度・色相とも似通っている(ライン相関性が高い)場合が多い。そこで映像信号を正確に走査線1本分の時間(μ秒)遅らせる遅延回路を通した信号と現在送られてきている信号とを足し合わせると画面のほとんどの領域でクロマ信号は打ち消しあい、残った輝度信号だけが得られる。逆に過去の信号との差分を取ると輝度信号は差し引きほぼゼロになり、位相が反転しているクロマ信号だけが残留する。
遅延回路を用いたこのフィルタは遅延時間の逆数の整数倍の周波数で利得にピークができ、周波数特性グラフで見るとちょうど櫛の歯のようになっている事から、クシ形フィルタと呼ばれる。
走査線1本ごとに色副搬送波の開始位相が半サイクルずつずれていくのは上述した通りだが1フレーム中の走査線数は奇数(525本)である為、画面中の任意の一点上における色副搬送波の位相はフレーム毎にも反転していることになる。したがって、正確に1フレーム分(ミリ秒)だけ映像信号を遅延できる回路を作成すればフレーム相関性を利用したY/C分離が可能になる。
「過去」の画面との比較を行うこのフィルターは2次元平面のフレーム画像を時間方向の次元で演算処理する事から、3次元クシ形フィルタと呼ばれる。
なお、画面全体の映像信号を正確に1フレーム分遅延し得る回路の実現には、非常に複雑で大規模な画像処理装置が必要となり高速な半導体メモリとその大容量化・廉価化を待たねばならず民生家電製品に搭載できる所までコストが下がったのは20世紀も終盤になってからである。
放送波への変調を行わずNTSCベースバンド信号を同軸ケーブルで外部の機器とやり取りする場合、入出力およびケーブルのインピーダンスは75Ωとし信号レベルを1V p-pとするよう規定されている。信号送出側/受入側とも直流伝送が可能な設計になっていればブランキングレベルを0V、同期信号レベル (-40IRE) を-286mV、映像信号の輝度100% (100IRE) を714mVとする。直流結合できない場合、もしくはどのような機器が接続されるのか確定出来ない場合は同期信号の底のレベルもしくは水平同期信号直後のブランキング期間の電圧を各々の機器内部で基準とする電圧に揃えるクランプ回路を受信側に設けて限定的直流再生を行う。
接続端子の形態は業務用機器ではインピーダンス75Ωに設計されたBNCコネクタ(通常のBNCコネクタは50Ω)と指定されているが、民生用機器ではRCA端子を使用するのが一般的である。
クロマ信号はNTSCベースバンド信号生成前の色差信号I・Q(又はU・V)の段階で最大1.3MHzの帯域制限フィルタがかけられているが輝度信号の帯域にはNTSC規格としての上限は設けられておらず、伝送路や記録再生機器の規格や性能によってのみ制限を受ける。たとえば放送波では4.2MHz(水平解像度約330TV本)の帯域が確保されており普及型家庭用VTRでは約2.5MHz(約200TV本)までの信号が録画再生可能である。レーザーディスクプレイヤーでは、4.5MHzの帯域が確保されていた。
音声は当初モノラルのみであったが、1978年に日本の東京広域圏で、FM-FM変調によるEIAJ方式音声多重放送が始まった。
1984年、アメリカでBTSC (Broadcast Television Systems Committee) が、MTS (Multi-channel Television Sound) と言われるAM-FM変調方式の音声多重放送の規格を制定した。日本とアメリカの方式の場合、音声信号内にサブキャリア(副搬送波)を挿入する。
またPAL圏の西ドイツでは1981年から、A2ステレオ方式で音声多重放送を行っている。これは前2者の様な方式と異なり、2つ目の音声搬送波を設けて、そこで第2音声(二ヶ国語放送の外国語音声または、ステレオ放送時の右チャンネル音声)を伝送する規格である。
NTSC方式のクロマ信号は、カラーバースト信号で示される基準位相との差が色相を表すという特性を持っている。そのため、伝送・増幅系やフィルターなどで位相歪みが発生すると表示画像の色相のずれに直結してしまう。空間波による放送ではマルチパスがもたらす信号歪みを完全に避けることは不可能であり、その影響も受信アンテナの性能とそれを設置した家々の位置によってまちまちとなる。またクロマ信号側帯波の広がり ( - 4.2MHz) の直上には音声キャリア (4.5MHz) が存在し、これによる妨害を排除する為の急峻な遮断特性を持つフィルターは1950年代当時の家電製品に適用できる技術ではクロマ信号の位相特性が確実に悪化する物しか作れなかった。
放送技術関係者らは、NTSC方式を評して自嘲的に
"Never Twice Same Color"(同じ色は二度と再現できない)
"No Television Same Color"(同じ色が出るテレビはない)
"Never Tested Since Christ"(有史以来、技術的正当性を検証していない)
などと揶揄しているくらいである。
NTSC以後に開発されたPALでは2つある色差信号のうちR-Y成分の極性を走査線1本毎に反転する事によって、位相歪みの影響を画面上で目立たなくする改良が加えられている。SECAMでは色差信号はFM変調されており、この種の問題は原理的に発生しない。
しかし1950年代から1970年代には問題となっていたこの件も送出側規格の厳密化やアンテナの指向特性向上、位相歪みを低く抑える電子回路技術の進歩、特に高性能な中間周波フィルター類の開発と量産廉価化・広範採用により次第に改善され「受像機を設置した先々で、いちいち色相調整つまみを回して合わせ込まないと正しい色が再現できない」という煩わしさを過去のものとしている。
NTSC方式は周波数インターリーブ関係が単純であり、直上直下のライン相関性を利用して輝度信号とクロマ信号とを比較的高い精度で分離するクシ型フィルターを数%の部品追加で実現できる。2本離れた走査線との比較が必要になるPALではライン相関性が低下してY/C分離の精度が悪化し、SECAMではそもそも色信号にライン相関性が無い。画面全体の映像信号を蓄積できる大容量メモリを使って過去のフレームとの比較を取り、フレーム間の相関性を利用して輝度/色差信号を抽出する3次元Y/C分離が家電製品に使われるようになる1990年代初頭までこの点ではNTSC方式に優位性があった。
なおNTSCの走査線数525本に対しPALのそれは625本と多く、画面の詳細度はPAL方式の方が上回っている。逆にNTSCのフレームレートはPALの毎秒25枚に比べ20%増しの毎秒30枚であり、動きが滑らかである。しかし水平解像度と走査線数とフレームレートの積は当該チャンネルの放送波が占有し消費する周波数帯域の広さと比例し各値はトレードオフする関係にあるため、これをもって方式の優劣を語ることは出来ない。
放送電波の帯域は当該国家ないし地域住民の言わば共有インフラ・共有財産であり、民生用途に話を限ったとしてもテレビジョン放送のみに専用が許されているわけではない。VHF帯 (30 - 300MHz) の利用が始まったばかりの1940年代において、当時の16mm白黒映画フィルムと同等の解像度400ラインペア[注釈 4] 程度を確保した上でチャンネル当たりの占有帯域が6MHzで済むNTSCは、国土が広く混信を避けつつ全国放送を行うためには多くのチャンネルを必要とするアメリカの事情を反映して開発された方式でもある。欧州などの7 - 8MHzのチャンネル幅を必要とするPAL/SECAM方式や14MHzもの帯域を占有して819本の走査線を描くフランス式System-Eの様に放送チャンネル当たりの帯域を広く取ればそれだけ多くの走査線を詰め込めるが、確保できるチャンネル数はその分減少する。テレビジョン放送用のチャンネル数を増やすには周波数が高い方向に確保するしかない(低い側の周波数領域は既に他の放送通信用途で埋まっており、数十 - 数百MHz単位で連続した領域を確保するには高い周波数帯を開拓する以外に方法は無い)わけだが、周波数が高くなればなるほど送信側受信側とも克服せねばならない技術的困難は増大する。
アメリカやその他の国々で採用されているオリジナルのRS-170A/SMPTE-170M規格では最低輝度の黒を表すセットアップレベルは7.5IREと規定されている。 日本のNHKでは黒レベルとブランキングレベルが等しく0IRE (=0V)、民放では5IREとなっており、両者の違いはごくわずかであり、多くの一般人は存在自体に気が付かないであろうレベルの差異ではあるが、業務として映像に携わる人々にとっては無視できない差違であり、業務用機器では日本規格と米国規格とで製品ラインナップが別になっていたり、明示的にセットアップレベルを切り替えるスイッチが付いていたりする。
また、「輝度100%の白」を意味する信号が送られてきた時に表示する「白」の色温度も日米で異なっている。SMPTE-170Mでは国際照明委員会 (CIE) 標準の光D65(色温度約6500Kの昼光色)を目標色にしているが、日本では明文化された規定は無いものの、色温度約9300KのD93が業界標準となっていた。
なお、日本の東半分(富士川および糸魚川以東)ではAC電源の周波数は米国の60Hzと異なる50Hzであるが、50Hz地域でNTSCを採用しているのは、日本以外ではミャンマーやジャマイカ、チリ、ペルー、トンガなどと少数派である。白黒時代に垂直同期周波数を米国の電源周波数と等しい60Hzに決定した理由は、端的に言えば1940年代の電子回路に使える増幅素子が真空管だけだったためである。当時はコンセントから取ったAC電源を直接整流してコンデンサで平滑化しただけで回路内部のメイン電源を生成するトランスレス設計が当たり前であり、安定化されていないB電源には交流周波数と同じ周期の脈流成分が多量に含まれていた。同様にブラウン管に印加する加速電圧も安定化されていないために電子ビームの速度が変化してしまい画面が明滅したり偏向感度が変化して画像が膨張・収縮する現象を抑えきれず、表示フィールドレートと電源周波数が等しく[注釈 5] なっていないと、激しいフリッカー(ちらつき)や画面の振動を生ずる危険性があった。またブラウン管の蛍光面を焼きつきから保護するために、放送を受信していない時にも水平・垂直偏向系を駆動し続ける必要があり、仮の同期信号を電源周波数の逓倍で作れるよう、総走査線数は比較的小さな奇数の積 525=3×5×5×7となっている。ところが、このような電源周波数に依存した設計を採ると日本の東西で方式を分けなければならなくなってしまう。幸い、アメリカでテレビ放送が開始された1941年から日本で開始される1953年まで十余年間の技術進歩の恩恵を受けて、内部回路用の低圧電源や電子ビーム加速用の数千ボルトの電圧を一定に保ち、また電源周波数の逓倍に頼らずとも正確な発振周波数を得られる電子回路とそれらを可能にする部品群が開発されており、東日本地域でNTSC方式の受像機を使用しても、画像に上述の様な問題を生じることは無い。
そしてこれはテレビジョン放送規格の差異ではないが、日本のFMラジオ放送では音声信号のエンファシス[注釈 6]時定数は欧州規格と同じ50 μsを採用している。アメリカや韓国・フィリピンなどではFMラジオ放送のエンファシス時定数とテレビのそれとは同じ75 μsであるため、テレビの音声放送周波数にチューニングダイヤルを合わせる事が出来れば(あるいは周波数変換機:コンバーターを使用すれば)テレビの受像機が無くても音声部分だけはラジオで聞く事が出来る[注釈 7]。しかし日本規格(50 μs)のFMラジオ受信機で何の対策もせずにエンファシス時定数75 μsで放送されているTV音声を聞くと高域が強調されて、いわゆる「キンキンした」音になってしまう。
NTSCカラー放送方式は激しい変革と急速な進化を遂げ続けている電子工業界において50年以上もの長きにわたって第一線にとどまり続け、その間も消費者の厳しい評価に応え続けてきた規格である。しかし放送通信のデジタル化は時代の趨勢であり、特に算術処理により動画データを高圧縮するMPEGを始めとした技術の実用化に伴って衛星放送はもとより地上波でも高精細度デジタル放送への移行がNTSC各国で進行した。
アメリカではATSC(Advanced Television Standards Committee、先進型テレビ標準委員会)による標準方式が策定され、地上波放送を受信し得る13インチ以上のテレビジョン装置は全てこのATSC方式のチューナーを備えるよう義務づけている。地上波アナログ放送は2009年6月12日をもって終了しており、低所得者層向けの移行支援としてデジタル放送をNTSCベースバンド信号に変換する単機能チューナーを購入する際に使用できる40ドル分の割引クーポンを配布していた。
日本においても、電波産業会(ARIB)が規定するISDB(Integrated Services Digital Broadcasting)方式への移行が予定された。BSデジタル放送は2000年、CSデジタル放送は2002年、地上デジタル放送は2003年に開始した。本来無料放送である民放局の番組にまでスクランブルをかけ、その解除キーであるB-CASカードをチューナーやレコーダーに挿入しないと受信できない煩雑さや件のB-CASカードを独占販売している私企業・株式会社ビーエス・コンディショナルアクセスシステムズが視聴者一人一人の個人情報を把握している危険性、それらを始めとする視聴者および製品購入者にとって不利益となりうる情報がシュリンクラップ契約で覆い隠され周知されていない隠蔽体質など非難も多く実現を危ぶむ声も聞かれたが、2011年7月24日をもって被災3県以外の地上波アナログ放送は停波された。東日本大震災の被災地である岩手県・宮城県・福島県(以下被災3県)では、アナログ放送完全終了が震災の特例法により、2012年3月31日に延期されていた。被災3県以外のテレビ局では、2011年7月1日からはすべての放送時間帯で停波の告知放送に切り替わり、番組放送自体も音声のみの放送となる計画であったが[3]、画面左下に停波告知を常時表示(CM中を除く)し、映像と音声共に7月24日正午まで放送するように変更された[4]。低所得者層への移行支援策として、生活保護世帯および身体障害者世帯などをはじめとする、市町村民税やNHK受信料が全額免除となる世帯への単機能チューナー無料給付制度が開始されている[5]。
またこれに伴って一部の番組で2009年度から段階的にレターボックス(サイズは「レターボックス16:9」が主であるが、NHKの番組によっては「-14:9」「-13:9」もある)での放送に移行していたが、2010年7月5日付の放送開始から全ての番組をデジタルと同様にレターボックス16:9に変更した(一部のコマーシャルは従来と同じ4:3サイズとなるものもあり)。それに先駆けて、一部の新番組(NHKなど)や日本テレビ系列の収録番組(生放送番組を除く)は同年4月からレターボックスサイズでの放送に切り替わっている。被災3県を除く44都道府県では、2011年7月24日正午にアナログ放送は地デジ移行を促す青色単一の画面に変わり番組が終了、25日0時までにコールサインを読み上げた後[注釈 8]、被災3県を除く放送局のアナログ放送が停波した。アナログ放送終了が2012年3月31日に延期されていた被災3県については2011年7月25日以降、CM中でもアナログ終了告知テロップの表示を開始し4:3のCMもレターボックス化(上下左右の額縁放送)、2012年3月12日から「アナログ放送終了まであと○○日」と書かれたカウントダウンの表示、2012年3月31日正午にアナログ放送は地デジ移行を促す青色単一の画面に変わり通常の番組が終了、1日0時までに被災3県に於ける放送局のアナログ放送が停波し、日本全国で完全デジタル化が完了した。これで、日本のアナログテレビジョン放送は完全に廃止され、約60年の歴史に幕を閉じた。なお、日本の地上アナログテレビジョン放送で使用されていた周波数領域は今後携帯端末向けマルチメディア放送や地上デジタルラジオ放送、防災・行政無線他に使用される計画となっているほか、中波放送の混信・難聴取の対策として、FM補完中継局(通称・ワイドFM 当初は90-95MHz)に活用されている。
世界の多くの地域で変調波によるNTSC信号の放送は終了したが、ベースバンド転送は、単一同軸ケーブルで転送可能でかつ確立した(したがって非常に安価な)技術として、防犯カメラ、車載カメラなどの短距離のSD(標準画質)動画転送手段として今でも広く利用されている。
ウィキニュースに関連記事があります。地上テレビ放送、民放でも常時「アナログ」マーク放送