Knowledge Base Wiki

Search for LIMS content across all our Wiki Knowledge Bases.

Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.

En algèbre abstraite, une fraction rationnelle est un quotient de deux polynômes formels construit à l'aide d'une indéterminée. Il s'agit ici de faire le quotient de deux polynômes formels. Le quotient de deux fonctions polynomiales, définies à l'aide d'une variable et non d'une indéterminée, s'appelle « fonction rationnelle ».

Construction algébrique

Soit K un corps commutatif (en général ou ). On démontre que l'ensemble des polynômes formels à une indéterminée, à coefficients dans K est un anneau intègre noté K[X]. On peut alors construire son corps des fractions, noté K(X) : Sur l'ensemble des couples éléments de K[X]×K[X]*, on définit :

  • une relation d'équivalence ~ par :(P, Q) ~ (P', Q') si et seulement si PQ' = QP' ;
  • une addition : (P, Q) + (P', Q') = (PQ' + QP', QQ')
  • une multiplication : (P, Q)(P', Q') = (PP', QQ').

L'ensemble des classes d'équivalence muni de l'addition et du produit induit est alors un corps commutatif appelé corps des fractions rationnelles. Tout couple (P, Q) où Q n'est pas le polynôme nul, est alors un représentant d'une fraction rationnelle. L'application qui à tout polynôme P, associe la classe de (P, 1) est un morphisme d'anneaux injectif qui plonge K[X] dans K(X).

Fraction irréductible : un couple (P, Q) tel que P et Q soient premiers entre eux — c'est-à-dire tel que les seuls diviseurs communs à P et Q soient des scalaires — est appelé un représentant irréductible de la classe de (P, Q) et tout autre représentant (P', Q') de la même classe est tel qu'il existe un scalaire λ tel que P' = λP et Q' = λQ. Il existe plusieurs représentants irréductibles d'une même classe mais un seul représentant irréductible dans lequel Q est un polynôme unitaire : c'est la fraction irréductible unitaire représentant la classe.

Degré d'une fraction  : Pour toute fraction rationnelle F, l'élément de défini par deg(P) - deg(Q) (où (P, Q) est un représentant de F) est indépendant du représentant de F et est appelé degré de F. Le degré d'une fraction vérifie les propriétés suivantes :

  • pour toutes fractions F et F', deg(F + F') ≤ sup(deg(F), deg(F')) ;
  • pour toutes fractions F et F', deg(FF') = deg(F) + deg(F').

Racine et pôle : Si (P, Q) est la fraction irréductible représentant F :

  • toute racine de P est racine de F ;
  • toute racine de Q est pôle de F.

Cas des fractions rationnelles sur l'ensemble des réels

On peut munir le corps ℝ(X) de la relation d'ordre définie par : FG si l'on a F(t) ≤ G(t) pour tout réel t assez grand. Cette relation est alors totale. De plus, elle est compatible avec l'addition et la multiplication par les éléments positifs : ℝ(X) a ainsi une structure de corps ordonné, et contient un sous-corps isomorphe à ℝ. Il n'est pas archimédien : en effet, on a 0 < 1/X < 1 mais, pour tout entier naturel n, n⋅(1/X) < 1.

D'une manière générale, en posant |F| = max(–F, F), on dira que F est infiniment petit devant G (noté FG) si, pour tout entier naturel n, n⋅|F| ≤ |G|.

Le degré fournit alors une échelle d'infiniment petits et d'infiniment grands par rapport aux réels : FG si, et seulement si, deg(F) ≤ deg(G).

L'ensemble des éléments de ℝ(X) devant lesquels les réels non nuls ne sont pas négligeables, i.e. ceux de degré inférieur ou égal à 0, forme un sous-anneau de ℝ(X).

Quelles différences entre fraction rationnelle et fonction rationnelle ?

À toute fraction rationnelle F, de représentant irréductible (P, Q), on peut associer une fonction rationnelle ƒ définie pour tout x tel que Q(x) est non nul, par . Cette association comporte cependant quelques risques :

  • d'une part, il se peut, si le corps K est fini, que la fonction ƒ ne soit jamais définie : prendre par exemple sur le corps  ;
  • d'autre part, la somme ou le produit de deux fractions ne peut s'effectuer que sur l'intersection des ensembles de définition et ne permet pas de transmettre les propriétés de corps : prendre par exemple et alors , , .

On peut toutefois, dans les cas de corps comme ou , construire un isomorphisme entre l'ensemble des fractions rationnelles et l'ensemble des fonctions rationnelles modulo la relation d'équivalence suivante :

ƒ ~ g si et seulement s'il existe un réel A tel que, pour tout x tel que |x | ≥ A, ƒ(x ) = g (x )

Cela revient à choisir le plus grand prolongement par continuité d'une fonction rationnelle.

Fraction rationnelle à plusieurs variables

Si K est un corps, l'ensemble des polynômes en plusieurs indéterminées reste un anneau commutatif unitaire intègre dont on peut chercher aussi le corps des fractions appelé corps des fractions rationnelles .

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Source

André Warusfel, François Moulin, Claude Deschamps, Mathématiques 1re année : Cours et exercices corrigés, Éditions Dunod, 1999 (ISBN 9782100039319)