Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
Kansainvälinen yksikköjärjestelmä eli SI-järjestelmä (ransk. Système international d’unités[1][2]) on maailman yleisin mittayksikköjärjestelmä. SI-järjestelmä sai nykyisen nimensä vuonna 1960, mutta keskeisimmiltä osiltaan se perustuu Ranskassa jo 1700-luvun lopulla käyttöön otettuun metrijärjestelmään. Jos nykyään puhutaan metrijärjestelmästä, silläkin käytännössä yleensä tarkoitetaan SI-järjestelmää.
SI-järjestelmästä päätetään Kansainvälisen paino- ja mittatoimiston (ransk. Bureau international des poids et mesures, BIPM) järjestämissä konferensseissa (CGPM). Suomessa SI-järjestelmän toteutuksesta vastaa Mittatekniikan keskus.
SI-järjestelmän mittayksiköitä voi käyttää maailmanlaajuisesti, ja useissa maissa lainsäädäntö määrää niiden käytön. Toisaalta joissain yhteyksissä saatetaan yhä suosia muita mittayksiköitä: esimerkiksi moottorien tehot ilmoitetaan usein hevosvoimina, ja jopa Suomen aluevesiraja on määritetty meripeninkulmina.[3] Myös ilmailussa korkeus ilmaistaan useimmissa maissa jalkoina ja nopeus solmuina (aiemmin metrejä ja kilometrejä tunnissa käytettiin ilmailussa huomattavasti nykyistä yleisemmin, vielä 1950-luvulla myös Suomessa[4], nykyään lähinnä Venäjällä ja eräissä Aasian maissa). Britanniassa puolestaan on lain mukaan liikennemerkeissä yhä käytettävä maileja ja jaardeja[5] (tosin nämä perinteiset brittiläisen järjestelmän mittayksikötkin on nykyään määritelty suhteessa SI-yksiköihin).
Yhdysvalloissa metrijärjestelmä laillistettiin jo vuonna 1866, mutta sitä ei ole otettu virallisesti käyttöön. SI-järjestelmä on silti alkanut saada jalansijaa luonnontieteiden ja lääketieteen sekä valtionhallinnon ja useiden teollisuusalojen piirissä. Yhdysvaltain lisäksi Liberia ja Myanmar (aiemmin Burma) ovat tiettävästi ainoat maat, joissa SI-järjestelmää ei ole virallistettu.[6]
Mittaustekniikan kehittyessä SI-järjestelmän perusyksiköiden määritelmiä on erinäisiä kertoja muutettu. Nykyiset määritelmät vahvistettiin vuonna 2018, ja ne tulivat voimaan 20. toukokuuta 2019.[7] Uusien määritelmien mukaiset perusyksiköt ovat kuitenkin käytännössä hyvin suurella tarkkuudella yhtä suuria kuin aikaisemmatkin.
SI-yksiköihin voidaan viitata käyttäen täydellisiä nimiä, jotka tarvittaessa mukautuvat kielikohtaisesti äänne- ja muoto-oppiin sekä oikeinkirjoitukseen (esimerkiksi suomeksi metri, sekunti, kilogramma, senttimetri, hertsi), tai virallisia tunnuksia, jotka kirjoitetaan aina samalla tavalla kielestä riippumatta (m, s, kg, cm, Hz). Esimerkiksi Euroopan unionin virallisessa viestinnässä mittayksiköiden nimet kirjoitetaan yleensä täydellisinä.[8]
SI-järjestelmän tunnukset eivät ole varsinaisesti lyhenteitä, vaikka monet niistä on alun perin muodostettu lyhentämällä. SI-tunnusten käyttöön liittyy joitain erikoissääntöjä, jotka eivät koske tavanomaisia lyhenteitä,[9][10] vaikka yleisesti ottaen lyhenteitä koskevat suomen oikeinkirjoitussäännöt ovat varsin yhdenmukaiset SI-järjestelmän sääntöjen kanssa. SI-järjestelmän mukaan tunnuksen perään ei esimerkiksi merkitä pistettä (jollei se päätä virkettä), mutta vastaavasti suomenkin oikeinkirjoitussääntöjen mukaan kaikki mittayksiköiden lyhenteet ovat pisteettömiä.[10][11]
SI-yksiköitä kirjoitettaessa noudatetaan seuraavia sääntöjä:[9][12]
Tunnukset kirjoitetaan pienaakkosin, paitsi jos yksikön nimi on johdettu erisnimestä, jolloin tunnuksen alkukirjaimena on suuraakkonen. Yksikön nimessä isoa alkukirjainta ei kuitenkaan käytetä (jollei se aloita virkettä). Esimerkiksi paineen mittayksikön tunnus on Pa (keksijä Blaise Pascalin mukaan), mutta yksikön nimi on pascal. Pienaakkosella kirjoitettu tunnus viittaa melkein aina toiseen yksikköön kuin vastaavalla suuraakkosella kirjoitettu tunnus: s = sekunti, mutta S = siemens (Werner von Siemensin mukaan). Samoin h = tunti, mutta H = henry.
dB, kWh jne. kirjoitetaan pienellä myös virkkeen alussa ja otsikossa, vaikka se muuten olisi suuraakkosin, esim. ”24 h VAROITUKSET”.[13]
Poikkeuksellisesti litran tunnus voidaan kirjoittaa paitsi pienaakkosella (l) myös suuraakkosella (L), jos halutaan varmistaa, ettei se sekaannu numeroon 1 tai suuraakkoseen I.
Kerrannaisyksiköiden muodostamiseen käytettävien etuliitteiden tunnukset kirjoitetaan aina samalla tavalla riippumatta perusosan aakkoslajista. Etuliitteiden tunnukset kirjoitetaan pienaakkosin kiloa eli tuhatkertaisuutta merkitsevään k-tunnukseen asti, mutta sitä suurempaa kerrannaisuutta merkitsevien etuliitteiden tunnukset ovat suuraakkosia: mm = millimetri (metrin tuhannesosa), mutta Mm = megametri (miljoona metriä); kHz = kilohertsi (tuhat hertsiä), mutta GHz = gigahertsi (miljardi hertsiä). Miljoonasosaa tarkoittavan mikron tunnuksena käytetään kreikkalaista pienaakkosta myy (μ)[14] tai tietoteknisistä syistä usein erityistä mikro-merkkiä (µ),[15] joka on (fontista riippuen) samannäköinen kuin myy.[16]
Mittayksikön tunnusta ei koskaan kursivoida, vaikka se esiintyisi keskellä muuten kursivoitua tekstiä. Sen sijaan aina kursiivilla kirjoitetaan SI-järjestelmän suureiden tunnukset, kuten ajan tunnus t ja massan tunnus m. Kursivoitu tunnus tarkoittaa siis eri asiaa kuin kursivoimaton: s = sekunti, mutta s = matka; S = siemens, mutta S = näennäisteho.
Lukuarvon ja yksikön tunnuksen väliin kirjoitetaan sanaväli (mieluiten sitovana välilyöntinä). Tämä koskee myös celsiusasteen tunnusta: 10 °C. Poikkeuksellisesti kiinni lukuarvoon kirjoitetaan kulma-asteen, kulmaminuutin ja kulmasekunnin tunnukset: 30° 22′ 8″.
Alun perin SI-järjestelmä hyväksyi desimaalierottimeksi ainoastaan pilkun. Vuonna 1997 sallittiin vaihtoehtoisesti pisteen käyttö sellaisissa teksteissä, jotka ovat pääosin englanninkielisiä, ja vuonna 2003 sääntöä väljennettiin edelleen, niin että desimaalipistettä saa käyttää kielestä riippumatta, jos se on joissain tilanteissa tapana.[9] Useimmissa Euroopan maissa desimaalierottimena käytetään silti pilkkua.
Suomessa desimaalierotin on standardin SFS 4175 mukaan yhä nimenomaan pilkku. Suomen puolustusvoimat on kuitenkin siirtynyt käyttämään aseluokituksissaan desimaalipistettä, joten esimerkiksi 7,62 RK 62 on nykyään 7.62 RK 62.lähde?
SI-järjestelmä suosittelee hyödyntämään yksiköiden etuliitteitä niin, että lukuarvot pysyvät 0,1:n ja 1 000:n välillä: 25 km; 0,25 mg. Jos pitkiä lukuja kuitenkin käytetään, ne voidaan selvyyden vuoksi jaotella kolmen numeron sarjoihin desimaalierottimen paikasta lähtien, vaikka SI-järjestelmä ei tätä varsinaisesti edellytä. Tällöin tuhaterottimena käytetään (sitovaa) välilyöntiä, ei pistettä tai pilkkua (joista kumpi tahansa voi esiintyä desimaalierottimena): 25 000 m; 0,000 25 g.[17]
Lisätunnusta ei voi liittää yksikön tunnukseen, mutta suureen tunnukseen sellainen voidaan liittää alaindeksinä: U (jännite), Ueff (tehollinen jännite); Ueff = 230 V (tehollinen jännite on 230 volttia). Jos alaindeksiä ei ole mahdollista käyttää, lisätunnus voidaan kuitenkin mainita sulkeissa yksikön tunnuksen jälkeen: U = 230 V (eff).
Jos lukusana ja mittayksikkö ovat samassa sijamuodossa, tunnukseen liitetään sijapääte kaksoispisteellä kuten tavallisiin loppulyhenteisiin. Sijapäätettä ei liitetä numeroin kirjoitettavaan lukusanaan vaan ainoastaan tunnukseen:[18][19]
Kun lukusana on nominatiivissa, mittayksikkö on tavallisesti partitiivissa (neljä metriä); vain luvun 1 jälkeen mittayksikkökin on nominatiivissa (yksi metri). Jos lukusana on nominatiivissa, tunnukseen ei merkitä oletusarvoista partitiivin päätettä:[18][19]
Jos sekä lukusana että mittayksikkö ovat partitiivissa, ilmauksen merkitys on toinen, ja tällöin partitiivin pääte on liitettävä tunnukseen:[19]
Selvyyden vuoksi tällaisissa tilanteissa kannattaisi kuitenkin pyrkiä kirjoittamaan lukusana kirjaimin ja yksikön nimi täydellisenä:
Johdannaisyksiköissä tunnuksen osa voi toisinaan vastata myös inessiiviä:
Tällaisten yhdistelmätunnusten taivuttaminen muissa sijoissa on hankalaa. SI-järjestelmän logiikan mukaan tunnus on jakamaton kokonaisuus, joten sijapääte olisi liitettävä tunnuksen loppuun, vaikka tämä voi vaikuttaa hämmentävältä:[19]
Kielitoimisto sen sijaan suosittelee muotoa ”10 m:iin/s”, mutta se on SI-järjestelmän kannalta epälooginen. Sijapäätettä ei voi noin vain jättää poiskaan (sillä olisi aivan eri asia sanoa tuulennopeuden kasvaneen kymmenen metriä sekunnissa), mutta ilmauksen voi koettaa muotoilla niin, että sijapäätettä ei tarvita:[19]
Usein helpoin ratkaisu harvinaisia mittayksiköitä taivutettaessa on kuitenkin käyttää tunnusten sijasta täydellisiä nimiä:[19]
SI-järjestelmä koostuu seitsemästä perusyksiköstä suureille pituus, massa, sähkövirta, aika, lämpötila, ainemäärä ja valovoima. Nykyisin kaikkien perusyksiköiden määritelmät pohjautuvat luonnonilmiöihin ja -vakioihin. Vuoteen 2019 saakka kilogramman ja ennen vuotta 1960 myös metrin määritelmät perustuivat prototyyppikappaleisiin.
SI-järjestelmän perusyksiköiden määritelmistä päättää yleinen paino- ja mittakonferenssi (ransk. Conférence générale des poids et mesures, lyh. CGPM). Nykyiset määritelmät vahvisti 26. yleinen paino- ja mittakonferenssi vuonna 2018, ja ne tulivat voimaan 20. toukokuuta 2019.[7]
Mitattava suure | Suureen tunnus[20] | Yksikön nimi | Yksikön tunnus | Määritelmä |
---|---|---|---|---|
aika | t [21] | sekunti [22] | s [22] | Sekunti on määritelty antamalla cesiumin taajuudelle ΔtCs eli cesium-133-atomin häiriintymättömän perustilan ylihienorakenteen kahden energiatason välistä siirtymää vastaavan säteilyn taajuudelle kiinteä lukuarvo 9 192 631 770, kun yksikkönä on Hz, joka on yhtä kuin s−1 |
pituus (etäisyys, korkeus) | l [21] | metri [22] | m [22] | Metri on määritelty antamalla valon nopeudelle tyhjiössä (c) kiinteä lukuarvo 299 792 458, kun yksikkönä on m/s, missä sekunti on määritelty ΔtCs:n avulla. |
massa | m [21] | kilogramma [22] | kg [22] | Kilogramma on määritelty antamalla Planckin vakiolle kiinteä lukuarvo 6,626 070 15 · 10−34, kun yksikkönä on Js, joka on yhtä kuin kgm2s−1, missä metri ja sekunti on määritelty c:n ja ΔtCs:n avulla. |
sähkövirta | I [21] | ampeeri [22] | A [22] | Ampeeri on määritelty antamalla alkeisvaraukselle kiinteä lukuarvo 1,602 176 634 · 10−19 kun yksikkönä on C, joka on yhtä kuin As, missä sekunti on määritelty ΔtCs:n avulla. |
termodynaaminen lämpötila | T [21] | kelvin [22] | K [22] | Kelvin on määritelty antamalla Boltzmannin vakiolle kiinteä lukuarvo 1,380 649 · 10−23, kun yksikkönä on J K−1, joka on sama kuin kg m2 s−2 K−1 missä kilogramma, metri ja sekunti on määritelty h:n, c:n ja ΔtCs:n avulla. |
ainemäärä | n [21] | mooli [22] | mol [22] | Mooli, tunnus mol, on ainemäärän SI-yksikkö. Yksi mooli sisältää täsmälleen 6,022 140 76 · 1023 perusosasta. Tämä luku on Avogadron vakion NA kiinteä lukuarvo, kun yksikkönä on mol−1, ja sitä sanotaan Avogadron luvuksi. Systeemin ainemäärä, tunnus n, on määrätynlaisten perusosasten lukumäärän mitta. Perusosanen voi olla atomi, molekyyli, ioni, elektroni, muu hiukkanen tai määritelty hiukkasten ryhmä. |
valovoima | Iv [21] | kandela [22] | cd [22] | Kandela on määritelty antamalla sellaisen monokromaattisen säteilyn, jonka taajuus on 540·1012 Hz, valaistustehokkuudelle kiinteä lukuarvo 683, kun yksikkönä on lm W−1, joka on yhtä kuin cd sr W−1 tai cd sr kg-1m-2s3 missä kilogramma, metri ja sekunti on määritelty h:n, c:n ja ΔtCs:n avulla. |
Useille yleisesti käytetyille yksiköille on annettu omia nimiä niiden käytön helpottamiseksi, vaikka ne ovatkin määriteltävissä perusyksiköiden tuloina ja osamäärinä:
Mitattava suure | Suureen tunnus[20] | Yksikön nimi | Yksikön tunnus | Yksikkö muilla yksiköillä ilmaistuna |
---|---|---|---|---|
lämpötila | T | celsiusaste [23] | °C | K (lämpötilaero) |
taajuus | f | hertsi [23] | Hz | 1/s |
tasokulma | α | radiaani [23] | rad | (dimensioton) |
avaruuskulma | Ω | steradiaani [23] | sr | (dimensioton) |
voima | F | newton [23] | N | kg·m / s² (= J/m) |
paine | p | pascal [23] | Pa | kg / (m·s²) (= N/m²) |
jännitys [24] | s, σ | |||
kimmokerroin | E, Y | |||
energia | E, W | joule [23] | J | kg·m²/s² (= N·m = W·s) |
sulamislämpö | Qs | |||
höyrystymislämpö | Qh | |||
teho | P | watti [23] | W | kg·m² / s³ (= V·A= J/s ) |
lämpövirta | H, Φ, F | |||
pätöteho | P | |||
loisteho (standardoimaton) | Q | vari [25] | var | |
näennäisteho (standardoimaton) | S | volttiampeeri [25] | VA | |
Sähköopin yksiköt | ||||
jännite [26] | U | voltti [23] | V | kg·m² / (s³·A) (= W/A = J/C) |
sähköinen potentiaali [26] | V | |||
sähkömotorinen voima [26] | E | |||
resistanssi [26], sähköinen vastus | R | ohmi [23] | Ω | kg·m² / (s³·A²) (=V/A) |
reaktanssi | X | |||
impedanssi | Z | |||
konduktanssi [26] (”sähkönjohtavuus”) | G | siemens [23] | S | s³·A² / (kg·m²) (= 1/Ω = A/V) |
transkonduktanssi | gm | |||
suskeptanssi | B | |||
admittanssi | Y | |||
Sähkövaraukseen liittyviä | ||||
sähkövaraus | Q | coulombi [23] | C | A·s |
sähkövuo | Ψ | |||
kapasitanssi | C | faradi [23] | F | s4 A² / (kg m²) (= A·s/V = C/V) |
Magnetismiin liittyviä | ||||
magneettivuo, käämivuo | Φ | weber [23] | Wb | kg·m² / (s²·A) (= V·s) |
magneettisen navan voimakkuus | p | |||
induktanssi | L | henry [23] | H | kg·m² / (s²·A²) (= V·s/A = Wb/A) |
keskinäisinduktanssi | M | |||
permeanssi | Λ | |||
magneettivuon tiheys | B | tesla [23] | T | kg / (s²·A) (= V·s/m² = Wb/m²) |
Valo-opin yksiköt | ||||
valovirta | Φ | luumen [23] | lm | cd·sr |
valaistusvoimakkuus | E | luksi [23] | lx | cd·sr / m² (= lm/m²) |
Säteilyn yksiköt | ||||
radioaktiivisuus | A | becquerel [27] | Bq | 1/s |
absorboitunut annos | D | gray [27] | Gy | (= J/kg) |
kerma | K | |||
ekvivalenttiannos | H | sievert [27] | Sv | (= J/kg) |
Kemian yksiköt | ||||
katalyyttinen aktiivisuus | z | katal [28] | kat | mol/s |
x) SI-järjestelmään perustuva yksikkö, jonka nimi ei kuitenkaan sisälly SI-järjestelmään
Seuraavassa luetellaan SI-järjestelmän mukaisesti johdettuja yksiköitä yleisimmin mitattaville suureille:
Mitattava suure | Suureen tunnus[20] | Yksikön nimi | Yksikön tunnus | Yksikkö muilla yksiköillä ilmaistuna |
---|---|---|---|---|
pinta-ala [29] | A | neliömetri | m² | m·m (= 100 dm² = 10 000 cm²) |
tilavuus [29] | V | kuutiometri | m³ | m·m·m (= 1 000 dm³ = 1 000 000 cm³ = 1 000 l) |
tilavuusvirta, virtaama | Q | kuutiometri sekunnissa | m³/s | m·m·m/s |
tiheys [30] | ρ | kilogramma kuutiometriä kohti | kg/m³ | (= g/l = g/dm³ = mg/cm³) |
ominaistilavuus | v | kuutiometriä kilogrammaa kohti | m³/kg | (= l/g = dm³/g = cm³/mg) |
säteilytysvoimakkuus [31], säteilyintensiteetti | E | watti neliömetriä kohti | W/m² | |
äänen intensiteetti | I | |||
energiatiheys | joulea kuutiometriä kohti | J/m³ | kg / (m·s²) (Ei Pa!) | |
dynaaminen viskositeetti | μ, η | Pa·s | kg / (m·s) | |
kinemaattinen viskositeetti | ν | m²/s | ||
jousivakio [32] | k | N/m | kg / s² | |
vääntömomentti [24] | T | newtonmetri | N·m | kg·m²/s² |
momentti (voiman momentti) [24] | M | |||
Suoraviivaiseen liikkeeseen liittyvät yksiköt | ||||
nopeus [29] | v | metri sekunnissa | m/s | (= 3,6 km/h) |
kiihtyvyys [30] | a | metri sekunnin neliötä kohti (metri per sekunti toiseen) |
m/s² | (m/s) / s |
putoamiskiihtyvyys [30] | g | |||
nykäys | j | metri sekunnin kuutiota kohti (metri per sekunti kolmanteen) |
m/s³ | (m/s²) / s |
liikemäärä [33] | p | newtonsekunti | N·s | kg·m/s |
impulssi | I | |||
Pyörivään liikkeeseen liittyvät yksiköt | ||||
pyörimisnopeus, kierrostaajuus [34] | n | kierros sekunnissa | 1/s | kierr/s |
kulmanopeus | ω | radiaani sekunnissa | rad/s | 1/s |
kulmataajuus | ||||
kulmakiihtyvyys | α | radiaani per sekunti toiseen | rad/s² | (rad/s) / s |
pyörimismäärä (kiertoliikemäärä, liikemäärämomentti, impulssimomentti) | L | joulesekunti | J·s | kg·m²/s |
hitausmomentti [35] | J | kg·m² | ||
Lujuusoppiin liittyvät yksiköt | ||||
jäyhyysmomentti (jäyhyys, neliömomentti, tasapinnan hitausmomentti) | I | m4 | ||
taivutusvastus | W | m³ | ||
Lämpöopin yksiköt | ||||
ominaissulamislämpö | s | joule moolia kohti | J/mol | kg·m²/(s² mol) |
joule kilogrammaa kohti | J/kg | m²/s² | ||
ominaishöyrystymislämpö | r | joule moolia kohti | J/mol | kg·m²/(s² mol) |
joule kilogrammaa kohti | J/kg | m²/s² | ||
lämpökapasiteetti [36] | C | joule kelviniä kohti | J/K | kg·m² / (s² K) |
ominaislämpökapasiteetti [36] | c | joule kelviniä ja kilogrammaa kohti | J/(K·kg) | m²/ (s² K) |
lämpöresistanssi (lämpövastus, lämmönvastus, terminen resistanssi) | Rth | kelvin wattia kohti | K/W | K·s³ / (kg·m²) |
lämpöresistanssi / rakennusfysiikka | Rt | kelvin-neliömetri wattia kohti | K·m²/W | K·s³ / kg |
lämmönjohtavuus [36] | λ | watti kelvin-metriä kohti | W / (K·m) | kg·m / (s³·K) |
lämmönsiirtymiskerroin [36] | h, α | watti kelvin-neliömetriä kohti | W / (K·m²) | kg / (s³·K) |
lämmönläpäisykerroin [36], U-arvo (k-arvo) | k | |||
lämpölaajenemiskerroin | α | 1/°C, 1/K | ||
lämpövuo, lämpövirran tiheys | watti neliömetriä kohti | W / m² | kg / s³ | |
lämpöarvo, polttoarvo | watti neliömetriä kohti | MJ / kg | 1 000 000·m²/s² | |
Sähköopin yksiköt | ||||
ominaisvastus eli resistiivisyys | ρ | ohmimetri | Ω·m | kg·m³ / (s³·A²) |
konduktiivisuus eli sähkönjohtavuus [37] | σ | S/m | s³·A² / (kg·m³) = 1/(Ωm) | |
sähkövirran tiheys [37] | J | ampeeri neliömetriä kohti | A/m² | |
Sähkövaraukseen liittyviä | ||||
sähkövuon tiheys | D | coulombi neliömetriä kohti | C / m² | A·s / m² |
sähkövaraustiheys | ρ | coulombi kuutiometriä kohti | C / m³ | A·s / m³ |
Magnetismiin liittyviä | ||||
reluktanssi, magneettivastus | Rm | 1/H | s²·A² / (kg·m²) = A/(V·s) | |
magneettinen momentti | μ, m | ampeerineliömetri | A·m² | J/T |
Sähkö- ja magneettikenttiin liittyviä | ||||
permittiivisyys | ε | F/m | A·s/(V·m) = C²/(N·m²) | |
permeabiliteetti [37] | μ | H/m | V·s/(A·m) = T·m/A | |
sähkökentän voimakkuus [37] | E | voltti metriä kohti | V/m | kg·m / (s³·A) |
magneettikentän voimakkuus [26][37], magnetoituma | H | ampeeri metriä kohti | A/m | |
Valo-opin yksiköt | ||||
luminanssi [31] | L | kandelaa neliömetriä kohti | cd/m² | |
valotehokkuus | luumenia wattia kohti | lm/W | ||
Kemian yksiköt | ||||
moolitilavuus [38] | Vm | kuutiometri moolia kohti | m³/mol | |
konsentraatio [38] | c | mooli kuutiometriä kohti | mol/m³ | |
moolimassa [38] | M | kilogramma moolia kohti | kg/mol | |
molaalisuus [38] | m | mooli kilogrammaa kohti | mol/kg |
SI-järjestelmän varsinaisten yksikköjen lisäksi käytetään myös muutamia perinteisiä yksikköjä erityisalojen suureille ja arkisille suureille, koska esimerkiksi ajan ilmoittaminen vain sekuntien kerrannaisina olisi varsin epäkäytännöllistä:
Mitattava suure | Suureen tunnus[20] | Yksikön nimi | Yksikön tunnus | Yksikkö muilla yksiköillä ilmaistuna | Kommentti |
---|---|---|---|---|---|
pituus | s | meripeninkulma [39] | mpk | 1 852 m | merenkulku |
astronominen yksikkö | AU | 0,1495979 · 1012 m | tähtitiede | ||
parsek | pc | 30,85678 · 1015 m | tähtitiede | ||
korkeus | jalka [39] | ft | 0,3048 m | lentokoneet | |
pinta-ala | A | aari [40] | a | 100 m² | maa- ja metsätalous |
hehtaari [40] | ha | 10 000 m² | maa- ja metsätalous | ||
aika | t | minuutti [41] | min | 60 s | |
tunti [41] | h | 60 min = 3 600 s | |||
vuorokausi (päivä) [41] | d | 24 h = 86 400 s | |||
tilavuus | V | litra [41] | l, L | dm³ = 1/1 000 m³ | |
massa | m | tonni [41] | t | 1 000 kg | |
atomimassayksikkö [40] | u | 1,6605402 · 10−27 kg | |||
paine | p | baari [42] | bar | 100 000 Pa, 10 N/cm² | |
verenpaine | elohopeamillimetri [39] | mm Hg | 133,322 Pa | ||
energia | E, W | elektronivoltti [40] | eV | 1,6021773 · 10−19 J | |
tasokulma | α | sekunti [41] | ″ | 1/60′ | |
minuutti [41] | ′ | 1/60° = 60″ | |||
aste [41] | ° | 60′ = 3 600″ = π/180 rad | |||
logaritmiset suhdesuureet | desibeli ja beli [40] | dB, B | |||
neperi [40] | Np | ||||
Akustiikan yksiköt | |||||
äänitehotaso, äänen tehotaso | LW | desibeli ja beli [40] | dB, B | (10 dB vastaa kymmenkertaista) | |
äänenpainetaso | LP | desibeli ja beli [40] | dB, B | (20 dB vastaa kymmenkertaista) | |
Säteilyn yksiköt | |||||
absorboitunut annos | D | rad [39] | rad | 0,01 Gy | |
ekvivalenttiannos | H | rem [39] | rem | 0,01 Sv |
Mitattava suure | Suureen tunnus[20] | Yksikön nimi | Yksikön tunnus | Yksikkö muilla yksiköillä ilmaistuna | Kommentti |
---|---|---|---|---|---|
nopeus | v | kilometri tunnissa | km/h | 1 000/3 600 m/s (1 m/s = 3,6 km/h) | |
solmu [39] | kn | 1 mpk/h = 1,852 km/h | alukset | ||
pyörimisnopeus, kierrostaajuus | n | kierros minuutissa [34] | 1/min | 1/60 1/s | |
Sähköopin yksiköt | |||||
sähköenergia | E, W | kilowattitunti [43] | kWh | 3,6 MJ | |
sähkövaraus | Q | ampeeritunti | Ah | 3 600 As = 3 600 C |
Etuliitteillä muodostettavat kerrannaisyksiköt ilmoittavat perusyksiköiden monikertoja, esimerkiksi yksi kilometri (1 km) on tuhat metriä (1000 m). Kerrannaisyksiköiden ja etuliitteiden avulla voidaan hyvin suuria tai pieniä lukuja esittää tiiviisti.
Etuliitteitä suositellaan käytettäväksi siten, että lukuarvo asettuu 0,1:n ja 1 000:n väliin (esimerkiksi 2,5 kJ, ei 2 500 J). Ensisijaisesti käytetään etuliitteitä, joita vastaava eksponentti on kolmella jaollinen. Jos johdannaisyksikkö on muodostettu jakolaskulla, etuliitettä käytetään ensisijaisesti osoittajassa; etuliitettä voidaan käyttää nimittäjässä, jos havainnollisuus sitä vaatii. Osoittajassa ja nimittäjässä etuliitteen yhtäaikainen käyttö ei ole suositeltua.[12]
Kahta etuliitettä ei saa käyttää samanaikaisesti samassa yksikössä: ei esimerkiksi mµm (”millimikrometri”), vaan nm (nanometri). Massan kerrannaisyksiköt muodostetaan grammasta, ei kilogrammasta, vaikka se onkin historiallisista syistä massan perusyksikkö.[12]
Kerrannaisyksikön etuliite | Tunnus | Merkitys | Kerroin 10 potensseina |
---|---|---|---|
kvetta | Q | kvintiljoonakertainen | ·1030 |
ronna | R | tuhatkvadriljoonakertainen | ·1027 |
jotta | Y | kvadriljoonakertainen | ·1024 |
tsetta | Z | tuhattriljoonakertainen | ·1021 |
eksa | E | triljoonakertainen | ·1018 |
peta | P | tuhatbiljoonakertainen | ·1015 |
tera | T | biljoonakertainen | ·1012 |
giga | G | miljardikertainen | ·109 |
mega | M | miljoonakertainen | ·106 |
kilo | k | ·1000, tuhatkertainen | ·103 |
hehto | h | ·100, satakertainen | ·102 |
deka | da | ·10, kymmenkertainen | ·101 |
desi | d | ·1/10 = 0,1, kymmenesosa | ·10−1 |
sentti | c | ·1/100 = 0,01, sadasosa | ·10−2 |
milli | m | ·1/1000 = 0,001, tuhannesosa | ·10−3 |
mikro | μ | miljoonasosa | ·10−6 |
nano | n | miljardisosa | ·10−9 |
piko | p | biljoonasosa | ·10−12 |
femto | f | tuhannesbiljoonasosa | ·10−15 |
atto | a | triljoonasosa | ·10−18 |
tsepto | z | tuhannestriljoonasosa | ·10−21 |
jokto | y | kvadriljoonasosa | ·10−24 |
ronto | r | tuhanneskvadriljoonasosa | ·10−27 |
kvekto | q | kvintiljoonasosa | ·10−30 |
Metrisen SI-yksikköjärjestelmän juuret ovat jo 1700-luvun lopussa, jolloin Ranskan kuningaskunnassa aloitettiin yksikköjärjestelmän järkeistystyö. Loppuun työ saatettiin vasta 1790-luvulla Ranskan suuren vallankumouksen jälkeen, jolloin määriteltiin metri ja kilogramma. Samalla niille rakennettiin mittanormaalit eli vertailukappaleet. Muutos oli suuri, sillä metri ja gramma kerrannaisyksiköineen korvasivat vaikeaselkoisen perinteisen mittajärjestelmän, jossa eri tavaralaatujen painoja, tilavuuksia ja mittoja käsiteltiin omina suureinaan. Samalla yksikköjärjestelmä muuttui kymmenkantaiseksi, mikä helpotti yksikkömuunnoksia. Seuraavalla vuosisadalla metrijärjestelmä tuli vähitellen käyttöön muissakin maissa varsinkin sen jälkeen, kun asiasta vuonna 1875 tehtiin kansainvälinen metrisopimus.
Nykyisen SI-järjestelmän perusyksiköistä yksi, sekunti, oli kuitenkin jo ollut käytössä kaikkialla Euroopassa jo kauan sitä ennen ja määritelty vuorokauden tiettynä murto-osana. Suunnitelmat vuorokautta lyhempien aikayksiköiden muuttamisesta kymmenkantaiseksi eivät toteutuneet. Kun sekunti tuli metrin ja kilogramman ohella kolmanneksi perusyksiköksi, nimitettiin käyttöön tullutta yksikköjärjestelmää MKS-järjestelmäksi.[44] Kuitenkin myös sekunti on myöhemmin määritelty uudestaan.
Sähköopin kehitys 1800-luvulla teki tarpeelliseksi määritellä uusia yksiköitä. Vuonna 1832 Carl Friedrich Gauss laati ehdotuksen yksikköjärjestelmäksi, jonka perusyksikköinä olisivat olleet millimetri, gramma ja sekunti ja jossa muut, myös sähkösuureiden yksiköt, olisi johdettu niistä. Vuonna 1874 brittiläiset tiedemiehet laativat James Clerk Maxwellin ja Thomsonin johdolla cgs-järjestelmän (lyhenne toisinaan C.G.S), jossa perusyksiköt olivat senttimetri, gramma ja sekunti. Näistä johdettiin muut yksiköt samaan tapaan kuin Gaussin järjestelmässä. Cgs-järjestelmää käytettiin tieteellisissä yhteyksissä yleisesti 1960-luvulle saakka. Käytännön kannalta sen sähkösuureiden yksiköt olivat kuitenkin epämukavaa kokoluokkaa, minkä vuoksi 1880-luvulla laadittiin niin sanottu käytännöllinen järjestelmä. Siihen sisältyivät muun muassa sähkövirran yksikkö ampeeri, resistanssin yksikkö ohmi ja jännitteen yksikkö voltti.[44]
Vuonna 1901 Giovanni Giorgi osoitti, että oli mahdollista yhdistää MKS-järjestelmä ja sähköyksiköiden käytännöllinen järjestelmä yhdeksi johdonmukaiseksi yksikköjärjestelmäksi. Kun ampeeri vahvistettiin järjestelmän neljänneksi perusyksiköksi, alettiin käyttää nimitystä MKSA-järjestelmä tai Giorgin järjestelmä.[44] Vuonna 1954 kymmenes kansainvälinen mitta- ja painokonferenssi vahvisti ampeerin ohella myös kelvinin ja kandelan perusyksiköiksi. Nimi SI-järjestelmä otettiin käyttöön vuonna 1960.[44]
Erona cgs- ja SI-järjestelmien välillä on mekaniikan yksiköissä pelkkä vakiokerroin, joka on kymmenen potenssi. Sen sijaan sähköopin yksiköissä ero on suuri. Cgs-järjestelmässä voidaan määritellä joko sähköstaattiset tai sähkömagneettiset yksiköt. Sähköstaattisissa yksiköissä tyhjiön permittiivisyys on 1, kun taas sähkömagneettisissa yksiköissä tämä arvo annetaan tyhjiön permeabiliteetille. Monet sähkömagneettiset yksiköt kuitenkin erotti ampeeriin perustuvista SI-yksiköistä niin ikään vain vakiokerroin, joka oli kymmenen potenssi, kun taas sähköstaattiset yksiköt poikkesivat niistä täysin. Vaikka järjestelmä oli nykyistä monimutkaisempi, useat sähköopin kaavat saivat cgs-järjestelmässä yksinkertaisemman muodon kuin MKSA- ja SI-järjestelmässä.
Monilla tekniikan aloilla on paljon käytetty myös niin sanottua teknistä järjestelmää, jossa kolmantena perussuureena pituuden ja ajan lisäksi ei ollut massa vaan voima. Sen yksikkö, kilogramman voima (kgf) eli kilopondi (kp), määriteltiin voimaksi, jolla Maa vetää puoleensa 1 kg:n massaa. Täten esimerkiksi energian yksikkönä käytettiin kilopondimetriä ja tehon yksikkönä kilopondimetriä sekunnissa. Tähän järjestelmään perustui myös lisäyksikkö hevosvoima, joka vastasi 75 kilopondimetriä sekunnissa.
Viimeisin uusi perusyksikkö, mooli, lisättiin järjestelmään virallisesti vuonna 1971, mutta sekin oli ollut tieteellisissä yhteyksissä käytössä jo kauan ennen sitä.
Kun metrijärjestelmä 1790-luvulla otettiin käyttöön, tarkoitus oli, että metri olisi 1 / 10 000 000 matkasta maapallon päiväntasaajalta pohjoisnavalle pituuspiiriä pitkin. Käytännön syistä määritelmä kuitenkin sidottiin platinan ja iridiumin seoksesta valmistettuun perusmalliin. Vuonna 1960 metrille vahvistettiin ensimmäinen luonnonvakioon perustuva määritelmä. Sen mukaan metri oli 1 650 763,73 kertaa sen säteilyn (oranssin valon) aallonpituus tyhjiössä, joka vastaa krypton-86-atomin siirtymää energiatasojen 2p10 ja 5d välillä.[45] Vuonna 1982 metrille vahvistettiin sekunnin määritelmään ja valonnopeuteen perustuva määritelmä, joka oli oleellisesti sama kuin nykyinen, mutta sanallisesti toisin muotoiltu.
Sekunti on vanhastaan määritelty yhdeksi 86 400:sosaksi eli 24 · 60 · 60:sosaksi keskiaurinkovuorokaudesta. Oleellisesti nykyisen kaltainen cesiumatomin säteilyn taajuuteen perustuva määritelmä vahvistettiin vuonna 1967.
Kilogramman oli alkujaan tarkoitus olla yhden vesilitran eli vesikuutiodesimetrin massa. Käytännön syistä sillekin valmistettiin perusmalli, ja tähän perusmalliin perustuva määritelmä oli voimassa vuoteen 2019 saakka.
Ampeeri oli vanhan määritelmän mukaan sähkövirta, joka kulkiessaan kahden äärettömän pitkän, yhdensuuntaisen ja toisistaan 1 metrin etäisyydellä olevan johtimen kautta aiheutti näiden välille 2 10-7 newtonin voiman pituusmetriä kohti.[46] Määritelmä perustui siis sähkövirran magneettiseen vaikutukseen. Aikoinaan on ollut käytössä myös elektrolyysiin perustuva määritelmä, jonka mukaan yhden ampeerin virta vapautti hopeasuolaliuoksesta sekunnissa 1,118 milligrammaa hopeaa.
Mooli määriteltiin aikaisemmin ainemääräksi, jossa on yhtä monta perusosasta (atomia, molekyyliä tms.) kuin yhdessä grammassa hiili-isotooppia C12 on atomeja.
Kelvin on alun perin määritelty vanhemman lämpötila-asteikon, celsiusasteikon avulla niin, että lämpötilaeron lukuarvo on kelvineinä yhtä suuri kuin celsiusasteinakin, mutta kelvinasteikon nollapisteenä on absoluuttinen nollapiste. Täten veden jäätymispiste, 0 °C, vastaa 273,15 kelviniä. Myöhemmin kelvinasteikko määriteltiin uudestaan niin, että veden kolmoispiste oli 273,16 kelviniä (ja samalla +0,01 celsiusastetta).
Määritelmien uudistamista suunniteltaessa kilogrammalle ehdotettiin myös määritelmää, jonka mukaan kilogramma olisi 6,0221415/12 · 1026 (eli 0,501845125 · 1026) kertaa hiili-12-atomin massa. Tämä määritelmä olisi liittynyt läheisesti moolin määritelmään, sillä gramman ja atomimassayksikön suhde olisi ollut edelleen tarkalleen sama kuin Avogadron vakion lukuarvo.[47]
Kandela oli aikaisemman määritelmänsä mukaan sellaisen säteilijän valovoima, joka lähettää tiettyyn suuntaan monokromaattista 540·1012 hertsin taajuista säteilyä ja jonka säteilyintensiteetti tähän suuntaan on 1/683 wattia steradiaania kohti (16. CGPM, 1979).
Kun perusyksiköille vuonna 2018 vahvistettiin nykyiset määritelmät, sekunnin, metrin ja kandelan määritelmät muotoiltiin vain yhtenäisyyden vuoksi sanallisesti uudelleen. Sen sijaan kilogramma, ampeeri, kelvin ja mooli määriteltiin aikaisemmasta oleellisesti eroavalla tavalla, joskin uusien määritelmien mukaiset yksiköt ovat hyvin suurella tarkkuudella yhtä suuria kuin aikaisemmatkin.