Type a search term to find related articles by LIMS subject matter experts gathered from the most trusted and dynamic collaboration tools in the laboratory informatics industry.
En física, el período de una oscilación u onda (T) es el tiempo transcurrido entre dos puntos equivalentes de la onda. El concepto aparece tanto en matemáticas como en física y otras áreas de conocimiento.
Es el mínimo lapso que separa dos instantes en los que el sistema se encuentra exactamente en el mismo estado: mismas posiciones, mismas velocidades, mismas amplitudes. Así el periodo de oscilación de una onda es el tiempo empleado por la misma en completar una longitud de onda. En términos breves es el tiempo que dura un ciclo de la onda en volver a comenzar. Por ejemplo, en una onda, el periodo es el tiempo transcurrido entre dos crestas o valles sucesivos. El periodo (T) es inverso a la frecuencia (f):
Como el periodo siempre es inverso a la frecuencia, la longitud de onda también está relacionada con el periodo, mediante la fórmula de la velocidad de propagación. En este caso la velocidad de propagación será el cociente entre la longitud de onda y el período.
En física un movimiento periódico siempre es un movimiento acotado, es decir, está confinado a una región finita del espacio de la cual las partículas nunca salen.
una partícula por la acción de una fuerza conservativa si es el potencial asociado a la fuerza conservativa, para energías ligeramente superiores a un mínimo de energía la partícula realizará un movimiento oscilatorio alrededor de la posición de equilibrio dada por el mínimo local de energía. El período de oscilación depende de la energía y viene dado por la expresión:[1]
Para suficientemente pequeño el movimiento puede representarse por un movimiento cuasi-armónico de la forma:
El término es la fase, siendo es la fase inicial, es la frecuencia angular dándose la relación aproximada:
Dependiendo el grado de aproximación de lo cercana que esté la energía al mínimo, para energías poco por encima del mínimo el movimiento está muy cercano al movimiento armónico dado por:
Un período de una función real f es un número tal que para todo t se cumple que:
Nótese que en general existe una infinidad de valores T que satisfacen la condición anterior, de hecho el conjunto de los períodos de una función forma un subgrupo aditivo de . Por ejemplo tiene como conjunto de períodos a , los múltiplos de 2yuya[aclaración requerida].
Una suma de funciones periódicas no es forzosamente periódica, como se ve en la figura siguiente con la función cos t + cos(√2·t):
Para serlo hace falta que el cociente de los períodos sea racional, cuando esa última condición no se cumple la función resultante se dice cuasiperiódica.